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characteristics and evolution dynamics of networks, and also their impacts on a variety of dynamic processes taking 
place on top of them. In this thesis, we study various aspects of network characteristics and dynamics, with a focus on 
reciprocity, competition and information dissemination.

We first formulate the maximum reciprocity problem and study its use in the in- terpretation of reciprocity in real 
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      Secondly, we analyze competition dynamics under cumulative advantage, where accumulated resource promotes 
gathering even more resource. We characterize the tail distributions of duration and intensity for pairwise 
competition. We show that duration always has a power-law tail irrespective of competitors’ fitness, while in- tensity 
has either a power-law tail or an exponential tail depending on whether the competitors are equally fit. We observe a 
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distribution. Lastly, we study the efficiency of information dissemination in social networks with limited budget of 
attention. We quantify the efficiency of information dissemination for both cooperative and selfish user behaviors in 
various network topologies. We identify topologies where cooperation plays a critical role in efficient information 
propagation. We propose an incentive mechanism called “plus-one” to coax users into cooperation in such cases.
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Networks are commonly used to study complex systems. This often requires a good

understanding of the structural characteristics and evolution dynamics of networks,

and also their impacts on a variety of dynamic processes taking place on top of them.

In this thesis, we study various aspects of network characteristics and dynamics, with

a focus on reciprocity, competition and information dissemination.

We first formulate the maximum reciprocity problem and study its use in the in-

terpretation of reciprocity in real networks. We propose to interpret reciprocity based

on its comparison with the maximum possible reciprocity for a network exhibiting

the same degrees. We show that the maximum reciprocity problem is NP-hard, and

use an upper bound instead of the maximum. We find that this bound is surprisingly

close to the empirical reciprocity in a wide range of real networks, and that there is
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a surprisingly strong linear relationship between the two. We also show that certain

small suboptimal motifs called 3-paths are the major cause for suboptimality in real

networks.

Secondly, we analyze competition dynamics under cumulative advantage, where

accumulated resource promotes gathering even more resource. We characterize the

tail distributions of duration and intensity for pairwise competition. We show that

duration always has a power-law tail irrespective of competitors’ fitness, while in-

tensity has either a power-law tail or an exponential tail depending on whether the

competitors are equally fit. We observe a struggle-of-the-fitness phenomenon, where

a slight different in fitness results in an extremely heavy tail of duration distribution.

Lastly, we study the efficiency of information dissemination in social networks with

limited budget of attention. We quantify the efficiency of information dissemination

for both cooperative and selfish user behaviors in various network topologies. We

identify topologies where cooperation plays a critical role in efficient information

propagation. We propose an incentive mechanism called “plus-one” to coax users

into cooperation in such cases.
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CHAPTER 1

INTRODUCTION

Most complex systems, be they technological or social, are naturally modeled as

networks, or, from a mathematical point of view, graphs, where nodes correspond to

discrete entities or components of a system and edges represent dyadic relations be-

tween components. Prominent examples are online social networks such as Facebook

and Google+, which make visible social ties between individuals. Another example

is furnished by the online encyclopedia, Wikipedia, which is a substantiation of the

structure of human knowledge. The emergence of these networks has triggered an

enormous amount of interest in the scientific community, and considerable work has

been devoted to their study.

One line of study focuses on the structural properties of networks themselves. Ex-

tensive empirical study has been conducted for a wide range of social and technologi-

cal networks, focusing on various network characteristics, such as degree distribution,

reciprocity and clustering coefficient. Empirical study has led to many interesting dis-

coveries, such as the ubiquitous power-law degree distributions and the small world

property. On the theoretical side, a variety of models, either static or dynamic, have

been proposed to explain the empirical observations such as the power-law degree

distributions and the small world property.

Another line of study, in contrast, focuses on dynamic processes on networks. In

this case, networks often serve as platforms for the ongoing processes, which usually

involve information dissemination. The focus here is on understanding the interaction

of network structural characteristics and dynamic processes. For instance, network

1



structures can affect, explicitly or implicitly, the efficiency of information dissemina-

tion, which may in turn change the network structures, as exemplified by the constant

follow and unfollow actions on the Twitter network.

This thesis studies various aspects of networks along the two lines mentioned

above. The goal is to advance our understanding of structures and behaviors of large

scale complex networks.

In the first part of the thesis, we focus on the interpretation of observed network

characteristics. The availability of vast amounts of large scale network data has made

it possible to study network characteristics and system behaviors as never before, so

we constantly face the problem of properly interpreting empirical observations. Differ-

ent network properties are commonly studied and interpreted separately. However,

they are generally interdependent. Specifying one usually imposes nontrivial con-

straints on another. Taking such constraints into account provides an additional, and

perhaps more appropriate, way of interpreting empirical observations. As a demon-

stration of the usefulness of this approach, we study the maximum reciprocity, i.e. the

maximum percentage of edges with a reciprocal edge, that is realizable by a network

with prescribed degree sequence.

In the second part of this thesis, we study network growth dynamics under cu-

mulative advantage, which refers to the “rich-get-richer” phenomenon. An example

of such growth dynamics is the Bianconi-Barabási model [12]. The growth process

can be viewed as a competition for links, which, directly or indirectly, represent some

kind of resource. The evolution over time of the competition, and in particular the

change in leadership, is a very intricate process that depends on the interplay of the

cumulative advantage effect, individual competitiveness or fitness, and randomness.

We focus on the relative leadership between two nodes and characterize the reduced

competition dynamics in terms of its duration and intensity.
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In the third part of this thesis, we study information dissemination in social net-

works. The efficiency of information dissemination as characterized by propagation

delay is affected by both network topology and user behavior. We analyze the effi-

ciency for both cooperative and selfish user behaviors in various network topologies,

and explore the design of incentive mechanisms when cooperation is critical to efficient

information dissemination.

1.1 Thesis Contributions

This thesis makes the following main contributions.

• We formulate the maximum reciprocity problem that seeks the maximum reci-

procity realizable by a network with given degree constraints, and prove its

NP-hardness. We provide an upper bound together with necessary conditions

and sufficient conditions for achieving the bound. We find that this bound is

surprisingly close to the empirical reciprocity in a wide range of real networks,

and that there is a surprisingly strong linear relationship between the two. We

partially characterize networks with maximum reciprocity by identifying some

suboptimal motifs. We demonstrate that a particular type of small suboptimal

motifs called 3-paths are the major cause for suboptimality in real networks.

• We characterize the tail distributions of duration and intensity for pairwise com-

petition under cumulative advantage. When the two competitors are equally

competitive or fit, we obtain the exact asymptotic distributions. When they are

not equally fit, we obtain asymptotic bounds on the distributions. We demon-

strate that duration always has a power-law tail irrespective of competitors’

fitness, while intensity has either a power-law tail or an exponential tail de-

pending on whether the competitors are equally fit. We observe the struggle-of-
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the-fitness phenomenon, where a slight different in fitness results an extremely

heavy tail of duration distribution.

• We characterize for various network topologies the information propagation de-

lay for both cooperative and selfish user behaviors and the corresponding price

of stability. We identify topologies where cooperation plays a critical role in

efficient information propagation. We propose an incentive mechanism called

“plus-one” to coax users into cooperation in such cases, and demonstrate its

effectiveness through simulation.

The rest of this thesis is organized as follows. Chapter 2 presents our investigation

on reciprocity in networks with degree constraints. Chapter 3 analyzes competition

dynamics under cumulative advantage. Chapter 4 explores the efficiency of informa-

tion dissemination in social networks with limited budget of attention. We conclude

in Chapter 5 and discuss some future directions.
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CHAPTER 2

RECIPROCITY IN NETWORKS WITH DEGREE
CONSTRAINTS

2.1 Introduction

Many complex networks are naturally directed, which endows them with nontrivial

structural properties not shared by undirected networks. One such property that

has been widely studied is reciprocity, which is classically defined as the fraction

of edges that are reciprocated, i.e. paired with an edge of the opposite direction.

Nontrivial patterns of reciprocity can reveal possible mechanisms of social, biological

or other nature that systematically act as organizing principles shaping the observed

network topology [31]. Previous work shows that reciprocity plays an important role

in many information networks such as email networks [57], the World Wide Web [3]

and Wikipedia [81, 82]. It is also shown that major online social networks that are

directed in nature, such as Twitter[44, 51], Google+[53], Flickr [56, 18], LiveJournal

[78, 56, 32], and YouTube [56], all exhibit a nontrivial amount of reciprocity.

When we try to interpret observed values of reciprocity, we are faced with the

problem of assessing the significance of the observation. For instance, the Swedish

Wikipedia has reciprocity of 21%. How significant is this? This question is often

answered by comparing measured values with the expected value of some null model.

One commonly used null model is a random graph with the same number of nodes

and edges [57]. An alternative is a random graph with specified degree sequence, as

the specific degree sequence is expected to affect reciprocity [79]. Networks are then

classified as reciprocal or anti-reciprocal according to whether the observed reciprocity
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is larger or smaller than the expected value [31]. Significant deviation from the

expected values suggests the existence of some underlying organizational mechanism

at work. For our example of Swedish Wikipedia, the expected reciprocities in both

random null models are almost zero, so the Swedish Wikipedia is classified as a

reciprocal network. Informative as this might be, comparison with expected values

is not the whole story. Is 21% a significant deviation from 0? Can we say that

the tendency to reciprocate is strong in this network? The answer might depend

on the eye of the beholder. However, if we know for some reason the maximum

possible reciprocity is only 28%, then we may safely conclude that 21% is indeed a

significant amount of reciprocity. On the other hand, if the maximum is 90%, we

might conclude that 21% is not as significant as suggested by the comparison with

random null models. In general, knowledge of the extremal values can give a better

idea about where the observation lies in the entire spectrum, which can potentially

change our conclusion about the significance level of the observation.

Since real social networks often exhibit reciprocities larger than those associated

with the random null models, we concern ourselves only with the maximum achiev-

able reciprocity in this chapter. As in the random null models, we may want to retain

certain key structural features of the real network when we maximize reciprocity.

The particular feature that we choose to preserve here is the joint in- and out-degree

sequence, which is a confounding factor in the study of reciprocity [79]. In real net-

works, in- and out-degrees often serve as proxies for some kind of capacities of the

corresponding node. For example, in a file sharing network where edges represent

transfers from file sources to downloaders, the in-degree of a node can reflect the

available network bandwidth and the out-degree the amount of resource. In a social

network where edges point from followers to followees, the in-degree of a node can

reflect its fame and popularity and the out-degree its budget of attention. Quite often

these capacity constraints are too important to be ignored in the network under con-
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sideration. By preserving the degree sequence, we honor these capacity constraints,

thus controlling these confounding factors.

Motivated by the above considerations, we study the problem of maximizing reci-

procity subject to prescribed joint in- and out-degree constraints. We make the

following contributions in this chapter.

• We formulate the maximum reciprocity problem. We provide a simple upper

bound on reciprocity and prove that it is NP-complete to decide the achievability

of the bound. We also identify sufficient conditions for achieving the bound.

• We demonstrate that the upper bound is surprisingly close to the empirical

reciprocity in a wide range of real networks, which suggests that the tendency

to form reciprocal edges might be much stronger than the observed reciprocity

indicates.

• We identify some suboptimal network motifs that can be eliminated to increase

reciprocity, thus providing a partial characterization of networks with maximum

reciprocity. Based on a particular type of small suboptimal motif called 3-

paths, we provide a greedy algorithm GreedyRewire to maximize reciprocity.

We demonstrate that 3-paths are the major cause for suboptimality in real

networks.

• We find a surprisingly strong linear relationship between the empirical reci-

procity and the upper bound across a wide range of real networks. We also find

a similar linear relationship between the number of reciprocated edges and the

corresponding upper bound on the logarithmic scale.

The rest of the chapter is organized as follows. Section 2.2 introduces the max-

imum reciprocity problem. Section 2.3 proves the NP-hardness of the problem, and

provides a simple upper bound for the maximum reciprocity. Section 2.4 identi-

fies patterns of maximum digraphs and provides a greedy algorithm for eliminating
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suboptimal motifs. Section 2.5 conducts some empirical study of real networks and

Section 2.6 concludes this chapter.

2.2 Graphic Sequences and Maximum Reciprocity Problem

In this section, we first introduce the notion of a graphic sequence for undirected

graphs and then a graphic bi-sequence for directed graphs or digraphs for short, which

will be used in the theoretical analysis of Section 2.3. We then formulate the maximum

reciprocity problem. Throughout the rest of the chapter, a graph, directed or not,

always means a simple graph, i.e. no self-loops or multiple edges are allowed. We will

use the terms node and vertex interchangeably. For directed graphs, an edge always

means a directed edge.

2.2.1 Graphic Degree and Bi-degree Sequences

For an undirected graph G = (V,E), the degree dG(v) of a node v is the number of

edges incident to v. Associated with every graph G is a sequence d = {dG(v) : v ∈ V }

of its degrees. However, not every sequence of nonnegative integers can be realized

by a graph. When it is realizable, the sequence is called graphic. More precisely, a

sequence of nonnegative integers d = (d1, d2, . . . , dn) is called graphic if there exists

a graph G with nodes v1, v2, . . . , vn such that dG(vi) = di for i = 1, 2, . . . , n. The

following classical theorem of Erdős and Gallai [27] characterizes graphic sequences.

Theorem 2.2.1 (Erdős-Gallai; Theorem 6.6 in [11]). A sequence of nonnegative

integers d1 ≥ d2 ≥ · · · ≥ dn is graphic if and only if
∑n

i=1 di is even and

k∑
i=1

di ≤ k(k − 1) +
n∑

i=k+1

min{di, k}, for k = 1, 2, . . . , n.

The graphicality of a sequence can be tested in linear time using the Erdős-Gallai

theorem [40]. It can also be tested using the constructive Havel-Hakimi algorithm in

O(n2 log n) time [37, 36].
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For a digraph G = (V,E), a node has both an in-degree and an out-degree. The

in-degree d−G(v) of a node v is the number of directed edges coming into v, and the

out-degree d+G(v) is the number of directed edges going out of v. Associated with every

digraph G is a bi-sequence (d+,d−), where d+ = {d+G(v) : v ∈ V } is the out-degree

sequence and d− = {d−G(v) : v ∈ V } is the in-degree sequence. As in the undirected

case, not every bi-sequence of nonnegative integers can be realized by a digraph. A

bi-sequence of nonnegative integers (d+,d−) = {(d+1 , d+2 , . . . , d+n ), (d−1 , d−2 , . . . , d−n )} is

called graphic if there exists a digraph G with nodes v1, v2, . . . , vn such that d+G(vi) =

d+i and d−G(vi) = d−i for i = 1, 2, . . . , n. The Fulkerson-Chen-Anstee theorem is the

analog of the Erdős-Gallai theorem for graphic bi-sequences [30, 19, 5].

Theorem 2.2.2 (Fulkerson-Chen-Anstee). A bi-sequence {(d+1 , . . . , d+n ), (d−1 , . . . , d−n )}

with d+1 ≥ d+2 ≥ · · · ≥ d+n is graphic if and only if
∑n

i=1 d
+
i =

∑n
i=1 d

−
i and

k∑
i=1

d+i ≤
k∑

i=1

min{d−i , k − 1}+
n∑

i=k+1

min{d−i , k}, for k = 1, 2, . . . , n.

The condition of the Fulkerson-Chen-Anstee theorem can be tested in O(n2) time.

The graphicality of bi-sequence can also be tested using the constructive Kleitman-

Wang algorithm in O(n2 log n) time [48].

2.2.2 Maximum Reciprocity Problem

In this subsection, we formulate the maximum reciprocity problem. For notational

simplicity, we henceforth make no distinction between a graph (digraph) and its edge

set when no confusion arises.

Given a digraph G, let Gs be the symmetric subgraph of G, i.e. (i, j) ∈ Gs if and

only if both (i, j) ∈ G and (j, i) ∈ G. The reciprocated edges of a digraph G are

precisely those of Gs. Thus the number ρ(G) of reciprocated edges in G is given by

ρ(G) = |Gs|, and the reciprocity of G is r(G) := ρ(G)/|G|. Note that we use |G| to
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denote the number of edges in G and that each pair of reciprocal edges contributes

two to ρ(G).

Given a graphic bi-sequence (d+,d−), let G(d+,d−) denote the nonempty set of

graphs that have (d+,d−) as their degree bi-sequence. Since the total number of edges

is fixed for a given graphic bi-sequence, maximizing r(G) is the same as maximizing

ρ(G). The maximum reciprocity problem is then to find a digraph G in G(d+,d−)

with maximum ρ(G), i.e.

maximize ρ(G)

subject to G ∈ G(d+,d−).

We denote the maximum value by ρ(d+,d−) and refer to a digraph G with ρ(G) =

ρ(d+,d−) as a maximum reciprocity digraph or maximum digraph for short.

2.2.3 Some Notations

We collect here some notations for later reference. Let G denote a generic digraph.

• Let Ga be the anti-symmetric subgraph of G, i.e. (i, j) ∈ Ga if and only if

(i, j) ∈ G but (j, i) /∈ G. Note that G = Gs +Ga and Gs ∩Ga = ∅, i.e. G is the

edge disjoint union of Gs and Ga.

• Let Gu be the undirected graph obtained by symmetrizing G, i.e. (i, j) ∈ Gu if

either (i, j) ∈ G or (j, i) ∈ G.

Let (d+,d−) be a graphic bi-sequence.

• The min sequence is

d+ ∧ d− = (d+1 ∧ d−1 , d+2 ∧ d−2 , . . . , d+n ∧ d−n ),

where a ∧ b = min{a, b}.
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• The max sequence is

d+ ∨ d− = (d+1 ∨ d−1 , d+2 ∨ d−2 , . . . , d+n ∨ d−n ),

where a ∨ b = max{a, b}.

• The total number of edges is

ε(d+,d−) =
∑
i

d+i =
∑
i

d−i .

• The total balanced degree is

β(d+,d−) =
∑
i

d+i ∧ d−i ,

which is the ℓ1-norm of the min sequence.

• The total unbalanced degree is

ν(d+,d−) =
1

2

∑
i

|d+i − d−i |,

which is the total variation distance between d+ and d−. Note that ε(d+,d−) =

β(d+,d−) + ν(d+,d−).

2.3 Hardness Analysis and Bounds

In this section, we first provide an upper bound for the maximum number of

reciprocated edges allowed by a graphic bi-sequence. We then prove that the maxi-

mum reciprocity problem is NP-hard by showing that it is NP-complete to decide the

achievability of the upper bound. Some sufficient conditions for achieving the upper

bound are then provided.
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2.3.1 Upper Bound for Reciprocity

In this subsection, we first establish a simple upper bound on the maximum num-

ber of reciprocal edges in terms of the total balanced degree of the graphic bi-sequence,

along with necessary conditions for achieving this upper bound. Some examples are

provided to illustrate how the necessary conditions may fail and that they are not

sufficient, which provides insight into why the bound is not always tight.

Proposition 2.3.1. The number of reciprocated edges in any digraph with a given

degree bi-sequence cannot exceed the total balanced degree, i.e.

ρ(d+,d−) ≤ β(d+,d−).

A necessary condition for equality is that both d+ ∧ d− and d+ ∨ d− be graphic.

Proof. Let G ∈ G(d+,d−) be a maximum digraph. Note that the number of recip-

rocated edges going out of a node v is at most d+G(v) ∧ d
−
G(v). The desired bound is

obtained by summing over v.

If equality holds, then Gs, as an undirected graph, has degree sequence d+ ∧ d−,

and Gu has degree sequence d
+∨d−. Thus both d+∧d− and d+∨d− are graphic.

Note that it is possible that neither d+ ∧ d− nor d+ ∨ d− is graphic. In fact, one

sequence can fail to be graphic independently of whether the other is graphic or not,

as illustrated by the following examples, where graphic bi-sequences are shown along

with the corresponding maximum digraphs.

Example 2.3.2. In Figure 2.1, neither the min sequence d+ ∧ d− nor the max se-

quence d+ ∨ d− is graphic, since they both have odd sums. Here ρ(d+,d−) = 2 <

β(d+,d−) = 3.

Example 2.3.3. In Figure 2.2, the min sequence d+ ∧ d− is graphic, while the max

sequence d+∨d− is not. No reciprocity is allowed by this bi-sequence, i.e. ρ(d+,d−) =
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1 2 3 4 5

i (d+i , d
−
i ) d+i ∧ d−i d+i ∨ d−i

1 (1, 0) 0 1

2 (1, 1) 1 1

3 (0, 2) 0 2

4 (2, 1) 1 2

5 (1, 1) 1 1

Figure 2.1: Graphic bi-sequence with non-graphic max and min sequences.

0, while the upper bound gives β(d+,d−) = 2n, so the gap can be arbitrarily large.

The only unbalanced nodes s and r have very large unbalanced degrees that cannot be

absorbed by themselves, as a consequence of which some, in fact all, balanced degrees

have to be used for absorbing unbalanced degrees rather than forming reciprocal edges.

s

1

2

2n

r

i (d+i , d
−
i ) d+i ∧ d−i d+i ∨ d−i

s (2n, 0) 0 2n

1 ∼ 2n (1, 1) 1 1

r (0, 2n) 0 2n

Figure 2.2: Graphic bi-sequence with graphic min sequence but non-graphic max
sequence.

Example 2.3.4. In Figure 2.3, the max sequence d+ ∨ d− is graphic, while the min

sequence d+ ∧ d− is not. As in Example 2.3.3, no reciprocity is allowed here, i.e.

ρ(d+,d−) = 0, while the upper bound is β(d+,d−) = 2n. The situation is, however,

the opposite. Node 0 has too large a balanced degree relative to the number of nodes

with nonzero balanced degrees, which is one here. Thus some of the balanced degrees

have to be absorbed by the unbalanced degrees.
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0

s1

s2

s2n

r1

r2

r2n

i (d+i , d
−
i ) d+i ∧ d−i d+i ∨ d−i

s1 ∼ s2n (1, 0) 0 1

r1 ∼ r2n (0, 1) 0 1

0 (2n, 2n) 2n 2n

Figure 2.3: Graphic bi-sequence with graphic max sequence but non-graphic min
sequence.

The common pattern in Examples 2.3.3 and 2.3.4 is that there are a small number

of nodes with extremely large degrees. In the social network context, these nodes

correspond to celebrities (node r in Figure 2.3.3), information aggregators (node s in

Figure 2.3.3), or middlemen (node 0 in Figure 2.3.4). These large degree nodes often

incur inevitable reduction of reciprocity from the upper bound.

The next example shows that the necessary condition in Proposition 2.3.1 is not

sufficient.

Example 2.3.5. For the bi-sequence (d+i , d
+
i ) = (n − i, i), i = 0, 1, . . . , n, the upper

bound is β(d+,d−) = ⌊n/2⌋ ·⌈n/2⌉. When n is a multiple of 4, both the max sequence

d+ ∨ d− and the min sequence d+ ∧ d− are graphic. However, ρ(d+,d−) = 0, as the

only digraph in G(d+,d−), of which (i, j) is an edge if and only if i < j, has zero

reciprocity; see Figure 2.4.

2.3.2 Proof of NP-hardness

We saw in the previous subsection that the upper bound may not be achievable.

Unfortunately, the next theorem shows that it is NP-complete to decide whether

the upper bound is achievable, which means the maximum reciprocity problem is

NP-hard.

Theorem 2.3.6. The decision problem whether ρ(d+,d−) = β(d+,d−) is NP-complete.
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0 1 2 n−1 n

i (d+i , d
−
i ) d+i ∧ d−i d+i ∨ d−i

0 ∼ ⌊n/2⌋ (n− i, i) i n− i

⌈n/2⌉ ∼ n (n− i, i) n− i i

Figure 2.4: Insufficiency of necessary condition in Proposition 2.3.1.

Proof. Note that the problem is the same as the existence problem of a digraph

G ∈ G(d+,d−) with ρ(G) = β(d+,d−). This problem is in NP, since given a digraph

G, we can verify whether ρ(G) = β(d+,d−) in polynomial time. To show that the

problem is NP-hard, we adapt the proof of Lemma 5 in [24] by reduction from the

3-color tomography problem, which is shown to be NP-hard therein.

Recall the 3-color tomography problem is as follows. Given nonnegative integral

vectors rw, rb ∈ Nn, and sw, sb ∈ Nm that satisfy

rwi + rbi ≤ m, swj + sbj ≤ n, for 1 ≤ i ≤ n, 1 ≤ j ≤ m,

and ∑
i

rci =
∑
j

scj, for c ∈ {w, b},

decide if (rw, rb, sw, sb) is feasible, i.e. there exists a matrixM with entries in {w, b, g}

such that

rci = |{j :Mij = c}|, scj = |{Mij = c}|, for c ∈ {w, b}.

Let (rw, rb, sw, sb) be an n ×m instance of the 3-color tomography problem. For

1 ≤ i ≤ n and 1 ≤ j ≤ m, let
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d+i = rwi + rbi + n− 1, d+n+j = swj ,

d−i = rwi + n− 1, d−n+j = swj + sbj.

(2.1)

Now we show that the instance (rw, rb, sw, sb) is feasible if and only if (d+,d−) is

graphic and ρ(d+,d−) = β(d+,d−), where β(d+,d−) = n(n− 1) + 2
∑n

i=1 r
w
i .

First assume that M is a solution to the 3-color tomography instance. We con-

struct a digraph G as follows. For 1 ≤ i ≤ n and 1 ≤ j ≤ m, let Wij = 1 if Mij = w,

and Bij = 1 if Mij = b. Let J be an n× n matrix with all off-diagonal entries equal

to 1 and diagonal entries equal to 0. Let the adjacency matrix of G be

 J W +B

W T 0

 .

It is straightforward to verify that G ∈ G(d+,d−) and ρ(G) = β(d+,d−).

For the reverse direction, assume that (d+,d−) is graphic and ρ(d+,d−) = β(d+,d−).

Then there exists a digraph G ∈ ρ(d+,d−) with ρ(G) = β(d+,d−). Divide the adja-

cency matrix of G into the following block form

G =

G11 G12

G21 G22

 .

where G11 is n× n and G22 is m×m.

Let Φ =
∑n

j=1 d
−
j −

∑m
i=1 d

+
n+i, which, by (2.1), evaluates to n(n − 1). On the

other hand, d−j =
∑n+m

k=1 G(k, j) and d
+
n+i =

∑n+m
k=1 G(n+ i, k), so

Φ =
n∑

i=1

n∑
j=1

G11(i, j)−
m∑
i=1

m∑
j=1

G22(i, j) ≤ n(n− 1) = Φ,
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where the inequality follows from the facts that G11(i, j) ≤ 1, G11(i, i) = 0 and

G22(i, j) ≥ 0. Since the equality holds, we must have G11 = J and G22 = 0. Thus

ρ(G) = n(n− 1) + 2
n∑

i=1

m∑
j=1

G12(i, j)G21(j, i)

≤ n(n− 1) + 2
n∑

i=1

m∑
j=1

G21(j, i)

= n(n− 1) + 2
m∑
j=1

d+n+j = β(d+,d−) = ρ(G).

Since the equality holds, G12(i, j) ≥ G21(j, i). Thus G12 =W +B and G21 = W T for

some (0, 1)-matrices W and B. Let Mij = w if W (i, j) = 1, and Mij = b if Bij = 1.

Then M is a solution to the 3-color tomography instance.

Thus we have shown that it is NP-complete to decide whether (d+,d−) is graphic

and ρ(d+,d−) = β(d+,d−). Since the graphicality of (d+,d−) can be tested in

quadratic time using the Fulkerson-Chen-Anstee theorem, it must be NP-complete to

decide whether ρ(d+,d−) = β(d+,d−).

2.3.3 Sufficient Conditions for Achieving Upper Bound

Given the hardness of the maximum reciprocity problem, we provide some suffi-

cient conditions for achieving the upper bound in Proposition 2.3.1. We start with the

following slightly more general theorem, which may be used to lower bound ρ(d+,d−).

Theorem 2.3.7. ρ(d+,d−) ≥ 2m if there exists a sequence d0 such that

(1). d0 is graphic with
∑

i d
0
i ≥ m,

(2). the residual bi-sequence (d+ − d0,d− − d0) is also graphic,

(3). ∆ <
√
δn+

(
δ − 1

2

)2
+ 3

2
− δ, where n = |V0|, ∆ =

∨
i∈V0

(d+i + d−i − d0i ) and

δ =
∧

i∈V0
(d+i + d−i − d0i ), with V0 = {i : d+i ∨ d−i > 0}.

17



This theorem is analogous to Theorem 2.2 in [16], which deals with packing two

graphic sequences for undirected graphs. Theorem 2.3.7 deals with packing a graphic

sequence d0 for undirected graphs and a graphic bi-sequence (d+ − d0,d− − d0) for

digraphs. The proof is deferred to Appendix A.1.

Applying Theorem 2.3.7 with d0 = d+ ∧ d−, we obtain the following sufficient

conditions for achieving the upper bound in Proposition 2.3.1.

Corollary 2.3.8. ρ(d+,d−) = β(d+,d−) if the following conditions hold,

(1). d+ ∧ d− and (d+ − d+ ∧ d−,d− − d+ ∧ d−) are graphic;

(2). ∆ <
√
δn+

(
δ − 1

2

)2
+ 3

2
− δ, where n = |V0|, ∆ =

∨
i∈V0

(d+i ∨ d−i ) and δ =∧
i∈V0

(d+i ∨ d−i ), with V0 = {i : d+i ∨ d−i > 0}.

Note that ∆ is the maximum of either the in- or out-degrees. Putting an upper

bound on ∆ rules out extremely large degrees, which are the trouble makers in the

examples of Section 2.3.1. However, in most real networks, we have δ = 1, so the

sufficient condition essentially requires ∆ <
√
n, which, unfortunately, usually fails

to hold. In fact, it fails for most networks studied in Section 2.5.

2.4 Patterns in Maximum Digraphs

In this section, we identify some structural patterns of maximum digraphs, or

equivalently, the associated suboptimal structures that contribute to the loss in reci-

procity that is not imposed by the degree bi-sequence. We first look at some small

suboptimal motifs and provide a greedy algorithm to eliminate them. We then show

some more complicated structural patterns of maximum digraphs and demonstrate

how they can help us pin down the maximum digraphs in some special cases.

Throughout this section, a cycle or a path always refers to a directed cycle or

directed path, i.e. the edges must be all in the same direction as we follow the cycle

or path. We also require that the edges be distinct. On the other hand, the vertices
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Figure 2.5: Different types of 3-paths with corresponding rewirings. The edges marked
by red crosses are to be rewired into the dashed green edges.

are not necessarily distinct. When the vertices are distinct, we say the path or cycle

is elementary.

2.4.1 Small Suboptimal Motifs

In this subsection, we focus on a particular type of small motifs that we call 3-

paths, the nonexistence of which also guarantees the nonexistence of many larger scale

suboptimal structures. As we will see in Section 2.5, elimination of such suboptimal

motifs brings reciprocity close to the corresponding upper bound for a variety of real

world networks.

Given a digraph G, we call an elementary path of length 3, π = (v0, v1, v2, v3), a

3-path if (vi, vi+1) ∈ Ga for i = 0, 1, 2, i.e., π consists entirely of unreciprocated edges.

We further classify 3-paths into the following four types according to the connectivity

between v0 and v3,

(I). (v0, v3) /∈ Gu, i.e. there is no edge between v0 and v3;

(II). (v0, v3) ∈ Gs;

(III). (v3, v0) ∈ Ga, i.e. (v0, v1, v2, v3, v0) is a 4-cycle;

(IV). (v0, v3) ∈ Ga.
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As shown in Figure 2.5, 3-paths of Types I, II and III are suboptimal and can

be rewired locally to increase reciprocity. We say a digraph is 3-path optimal if it

has no 3-path of Type I, II or III. Note that when viewed as a transformation on

Ga, the rewiring procedure in Figure 2.5 simply eliminates 4-cycles (Type III), and

replaces open 3-paths by a shortcut from its first vertex to its last vertex if such a

shortcut does not yet exist (Types I and II). Thus each rewiring increases the number

of reciprocated edges by either 2 or 4, and we have the following

Lemma 2.4.1. A maximum digraph is 3-path optimal.

Given a digraph G, we can greedily rewire all 3-paths to get a lower bound on the

maximum reciprocity allowed by the degree bi-sequence of G. The resulting greedy

algorithm is shown in Algorithm 1.

Algorithm 1 GreedyRewire

Input: G = (V,E)
1: S ← V
2: while S ̸= ∅ do
3: pick v0 ∈ S
4: if there exists non-Type IV 3-path π = (v0, v1, v2, v3) then
5: G← Rewire(π)
6: S ← S ∪ {v1, v2}
7: else
8: S ← S − {v0}
9: end if
10: end while
11: return G

Proposition 2.4.2 guarantees that Algorithm 1 eliminates all 3-paths of Types I,

II and III. The proof is deferred to Appendix A.2.

Proposition 2.4.2. Algorithm 1 returns a 3-path optimal digraph.

Note that depending on how v0 and π are picked, Algorithm 1 can return different

3-path optimal graphs. Although there is no theoretical guarantee, we will see in

Section 2.5 that reciprocities of 3-path optimal digraphs returned by Algorithm 1 are
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very close to the corresponding upper bounds and hence close to the maxima as well.

The next subsection shows that 3-path optimality precludes many other suboptimal

structures, which partially explains why Algorithm 1 works pretty well in practice.

2.4.2 Properties of Maximum Digraphs

In this subsection, we consider additional suboptimal structures that are more

complicated than 3-paths. Some of these structures are automatically eliminated

by Algorithm 1, while others require extra attention. We will state the results as

properties of maximum digraphs. Any violation of the stated properties yields a

suboptimal structure.

2.4.2.1 3-path Optimal Digraphs

We first consider some properties of 3-path optimal digraphs, which, by Lemma 2.4.1,

are also properties of maximum digraphs. All these properties involve only unrecip-

rocated edges. Note that any suboptimal structures that violate these properties

are automatically eliminated by Algorithm 1. Let G denote a 3-path optimal digraph

throughout this subsection. Recall that in a 3-path optimal digraph, the only possible

3-path is of Type IV.

Lemma 2.4.3 shows that the unreciprocated edges of a 3-path optimal digraph

cannot form any elementary path of odd length without a shortcut. As a result, for

any two vertices u and v, either there is no path from u to v in Ga, or there is such

a path of length at most 2.

Lemma 2.4.3. If π = (v0, v1, . . . , v2p+1) is an elementary path of odd length in Ga,

then (v0, v2p+1) ∈ Ga.

Proof. We use induction on p. If p = 0, then (v0, v1) ∈ Ga by assumption. If p = 1,

then π is a 3-path of Type IV and hence (v0, v3) ∈ Ga. Now consider p ≥ 2. We have
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(v0, v2p−1) ∈ Ga by the induction hypothesis. Then (v0, v2p−1, v2p, v2p+1) is a 3-path

of Type IV. Thus (v0, v2p+1) ∈ Ga.

Lemma 2.4.4 shows that the anti-symmetric subgraph of a 3-path optimal digraph

is almost cycle free. We can obtain a directed acyclic graph from it by removing an

edge from each 3-cycle.

Lemma 2.4.4. The only possible cycles in Ga are 3-cycles, and any two distinct

3-cycles must be vertex disjoint.

Proof. We first prove that two distinct 3-cycles must be vertex disjoint by contradic-

tion. Suppose they share at least one vertex v0. Let the cycles be C0 = (v0, v1, v2, v0)

and C1 = (v0, v3, v4, v0). Note that v1 ̸= v4 and v2 ̸= v3, as all edges are in Ga. Since

C0 and C1 are distinct, we must have either v1 ̸= v3 or v2 ̸= v4. Without loss of gen-

erality, assume v1 ̸= v3. Then (v1, v2, v0, v3) is a 3-path of Type IV, so (v1, v3) ∈ Ga.

But then (v1, v3, v4, v0) is a 3-path of Type III, which is impossible. Therefore, C0

and C1 must be vertex disjoint.

Next we prove there are no elementary k-cycles for k ≥ 4. Suppose there is

such a cycle (v0, v1, . . . , vk−1, v0). If k is even, (v1, vk−2) ∈ Ga by Lemma 2.4.3.

But (v0, v1, vk−2, vk−1) is a 3-path of Type III, which is impossible. If k is odd,

then (v0, vk−2), (v1, vk−1) ∈ Ga again by Lemma 2.4.3. But then (v0, v1, vk−1, v0) and

(v0, vk−2, vk−1, v0) are two distinct 3-cycles with two common vertices, which is again

impossible.

Finally, suppose there is a non-elementary cycle. We can be decompose it into

several distinct elementary cycles, all of which must be 3-cycles by the previous para-

graph. But then we have distinct 3-cycles that are not vertex disjoint, which is

impossible. Therefore, there are no k-cycles for k ≥ 4.

Although 3-path optimality does not preclude 3-cycles, they are unlikely to exist

in 3-path optimal graphs obtained from real world networks using Algorithm 1, as
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Lemma 2.4.5 requires that the vertices of a 3-cycle in such graphs have exactly the

same connectivity to every vertex outside the 3-cycle, which is extremely unlikely,

especially in large graphs.

Lemma 2.4.5. For a 3-cycle C in Ga and any vertex v not in C, if there is a path π

in Ga that connects v and C, then there is an edge of Ga between v and each vertex

of C, all in the same direction as π (i.e. from v to C or from C to v).

Proof. Let C = (v0, v1, v2, v0). Without loss of generality, assume π is from v to v0 and

has odd length. Successive application of Lemma 2.4.3 to the paths π, (v, v0, v1, v2)

and then (v, v2, v0, v1), we obtain (v, v0) ∈ Ga, (v, v2) ∈ Ga and (v, v1) ∈ Ga in the

same order.

2.4.2.2 Maximum Digraphs

In this subsection, we consider some properties of maximum digraphs that are

not direct consequences of 3-path optimality. The associated suboptimal structures

may be left intact by Algorithm 1 and require extra attention. Throughout this

subsection, let G⋆ denote a maximum digraph with a given bi-sequence (d+,d−), i.e.

G⋆ ∈ G(d+,d−) and ρ(G⋆) = ρ(d+,d−).

We know from Lemma 2.4.4 that large cycles involving only unreciprocated edges

are suboptimal structures, but certain cycles of even length that contains reciprocated

edges are also suboptimal. In particular, we have the following

Lemma 2.4.6. Let C be an even cycle in H ∈ G(d+,d−). If any two edges in C∩Hs

are separated by an odd number of edges in C, then there exists H ′ ∈ G(d+,d−) with

ρ(H ′) = ρ(H) + |Ca| − 2|Ca ∩ Hs|, where Ca is the anti-symmetric part of C, i.e.

Ca = {(i, j) ∈ C : (j, i) /∈ C}.

Note that C ∩Ha ⊂ Ca but it is not necessarily true that Ca = C ∩Ha. The two

edges (3, 4) and (5, 0) in Figure 2.6(a) are in Ca but not in C∩Ha. Any cycle satisfying
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Figure 2.6: Suboptimal even cycle with reciprocated edges. Reciprocity can be in-
creased by rewiring the edges marked by red crosses into the dashed green edges.

the conditions in Lemma 2.4.6 is suboptimal if it has more anti-symmetric edges than

symmetric ones. The cycles (0, 1, 2, 3, 4, 5, 0) in Figure 2.6(a) and (0, 1, 2, 0, 5, 3, 4, 5, 0)

in Figure 2.6(b) are two such examples. Note that these two cycles are not automat-

ically eliminated by Algorithm 1.

Proof of Lemma 2.4.6. Let C = (v0, v1, . . . , v2p−1, v2p = v0), where the vertices are

labeled such that (v2p−1, v0) ∈ Hs if C ∩Hs ̸= ∅. Note that the vertices may not be

distinct. Note also that we must have (v2k, v2k+1) ∈ Ha for all k. If (v2k, v2k+1) ∈ Hs

for some k, then the number of edges in C between (v1, v2) and (v2k, v2k+1) would be

2k − 2, contradicting the assumption that any two edges in C ∩Hs are separated by

an odd number of edges in C. As illustrated in Figure 2.6, let

H ′ = H − {(v2i−1, v2i)}pi=1 + {(v2i−1, v2i−2)}pi=1.

Since (v2i−2, v2i−1) ∈ Ha, we have (v2i−1, v2i−2) /∈ H and hence H ′ ∈ G(d+,d−). Note

that the edges in C ∩Ha are either absent from H ′ or in H ′
s, so Ha−H ′

a = C ∩Ha =

Ca ∩Ha. On the other hand, all edges in C ∩Hs are removed from H ′, so H ′
a−Ha =

Ca ∩Hs. Thus by going from H to H ′, we eliminated |Ca ∩Ha| unreciprocated edges

while creating |Ca ∩Hs| new ones. Therefore, ρ(H ′) = ρ(H)− |Ca ∩Hs|+ |Ca ∩Ha|.
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Since |Ca| = |Ca ∩ Hs| + |Ca ∩ Ha|, the desired conclusion follows by eliminating

|Ca ∩Ha|.

Lemma 2.4.7 specifies how multiple 3-cycles should be connected in maximum

digraphs. If we collapse each 3-cycle into a single vertex by contracting its edges,

the subgraph of G⋆
a induced by these vertices will have the structure in Figure 2.4.

Therefore, while the existence of multiple 3-cycles is already very unlikely in 3-path

optimal digraphs, it is even less likely in maximum digraphs with degree bi-sequences

of real world networks.

Lemma 2.4.7. The set of all distinct 3-cycles of G⋆
a can be linearly ordered as

C0, C1, . . . , Cm such that there are 9 edges of G⋆
a going from Ci to Cj for all 0 ≤

i < j ≤ m.

Proof. Consider two distinct 3-cycles C = (v0, v1, v2, v0) and C ′ = (w0, w1, w2, w0).

There cannot exist a pair of edges from G⋆
s that connect C and C ′; otherwise,

say (v0, w0) ∈ G⋆
s, the cycle (v0, v1, v2, v0, w0, w1, w2, w0, v0) would be suboptimal by

Lemma 2.4.6. On the other hand, there must be at least one edge between C and C ′;

otherwise, replacing Ci and Cj by the three pairs of edges {(vi, wi), (wi, vi)}2i=0 would

increase the reciprocity. Without loss of generality, assume (v0, w0) ∈ G⋆
a. It then fol-

lows from Lemma 2.4.5 that (vi, wj) ∈ G⋆
a for all i, j ∈ {0, 1, 2}. By Lemma 2.4.4, such

edges cannot be part of any cycle. Therefore, we can sort the 3-cycles topologically

and label them in the desired way.

The next lemma complements Lemma 2.4.3 by specifying connection patterns of

elementary paths of even length.

Lemma 2.4.8. Let π = (v0, v1, . . . , v2p) be an elementary path of even length 2p ≥ 4

in G⋆
a, E0 = {(v2i, v2j) : i ̸= j} and E1 = {(v2i−1, v2j−1) : i ̸= j}. If (v0, v2p) /∈ G⋆

a,

then G⋆ either has all the edges in E0 but none in E1, or vice versa.
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(a) E0 ⊂ G⋆, E1 ∩G⋆ = ∅.

0 1 2 3 4

(b) E1 ⊂ G⋆, E0 ∩G⋆ = ∅.

Figure 2.7: Patterns of even paths in maximum digraphs. Each undirected solid edge
represents a pair of reciprocated edges in G⋆. Each dashed edge represents a pair of
edges that are both missing in G⋆.

Proof. See Appendix A.3.

Figure 2.7 shows both possibilities for an elementary path of length 4. The short-

cuts required by Lemma 2.4.3 are also shown. The red dashed edges represent those

that cannot coexist with the green edges in a maximum digraph. Some suboptimal

structures that violate Lemma 2.4.8 cannot be automatically eliminated by Algo-

rithm 1. For example, if the pair of edges between the vertices 0 and 2 are missing

from Figure A.4, the resulting suboptimal digraph will be left intact by Algorithm 1.

2.4.3 Some Examples

In this subsection, we illustrate how the structural patterns of the previous sub-

section may be used to pin down the maximum digraph in some special cases. Here

G⋆ always denotes a maximum digraph.

Proposition 2.4.9 shows that when the bi-sequence is perfectly balanced, the max-

imum digraph achieves perfect or near-perfect reciprocity. Therefore, any unfulfilled

reciprocity must be due to the lack of effort to form reciprocal edges rather than due

to the fundamental limit imposed by the bi-sequence itself.

Proposition 2.4.9. Suppose (d+,d−) is perfectly balanced, i.e. ν(d+,d−) = 0.

(1). If ε(d+,d−) is even, then ρ(d+,d−) = ε(d+,d−).

(2). If ε(d+,d−) is odd, then ρ(d+,d−) = ε(d+,d−)−3, and G⋆
a consists of a 3-cycle.
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Proof. Since ν(d+,d−) = 0, we have d+i = d−i for all i. Thus any edge of G⋆
a must be

contained in a cycle of length at least 3 in G⋆
a. By Lemma 2.4.4, the length of such a

cycle is exactly 3. By Lemma 2.4.7, there is at most one such cycle in G⋆
a. Thus G

⋆
a

is either empty or a 3-cycle. Since ρ(G⋆) must be even, the former case corresponds

to even ε(d+,d−) and the latter odd ε(d+,d−).

The next proposition shows that when the bi-sequence is slightly unbalanced, the

number of possible values of ρ(d+,d−) increases. This sheds some light on why the

maximum reciprocity problem is so difficult. As the total unbalanced degree increases,

the number of possibilities is expected to explode.

Proposition 2.4.10. Suppose (d+,d−) is slightly unbalanced with ν(d+,d−) = 1,

d+0 − d−0 = 1 and d−1 − d+1 = 1.

(1). If ε(d+,d−) is even, then the gap ε(d+,d−)− ρ(d+,d−) is either 2 or 4. When

the gap is 2, the two edges in G⋆
a form a 2-path from 0 to 1. When the gap is

4, G⋆
a is the vertex disjoint union of {(0, 1)} and a 3-cycle.

(2). If ε(d+,d−) is odd, then the gap ε(d+,d−)− ρ(d+,d−) is either 1 or 5. When

the gap is 1, G⋆
a = {(0, 1)}. When the gap is 5, G⋆

a is the vertex disjoint union

of a 2-path from 0 to 1 and a 3-cycle.

Proof. Note that there must be a path from 0 to 1 in G⋆
a. Let π be the shortest path

from 0 to 1 in G⋆
a. All edges in G

⋆
a−π, if there is any, must be contained in a cycle in

G⋆
a. By Lemma 2.4.4, G⋆

a can only have 3-cycles. If G⋆
a had more than one 3-cycles,

Lemma 2.4.7 would require that there be at least 9 edges in G⋆
a that are not contained

in any cycle, all of which must be in π. Lemma 2.4.3 shows that π has either one or

two edges. Therefore, G⋆
a − π is either empty or has one 3-cycle. By Lemma 2.4.5,

π and the 3-cycle, if there is one, must be vertex disjoint. Since |π| ∈ {1, 2}, and

|G⋆
a−π| ∈ {0, 3}, it follows that ε(d+,d−)−ρ(G⋆) = |G⋆

a| = |π|+ |G⋆
a−π| ≤ 2+3 = 5.
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Figure 2.8: Example 2.4.11.

Note that ρ(G⋆) is even. If ε(d+,d−) is even, then ε(d+,d−)−ρ(G⋆) is equal to |π| = 2

or α(G⋆) = |π|+ |Ga− π| = 1+ 3 = 4. If ε(d+,d−) is odd, then ε(d+,d−)− ρ(G⋆) is

equal to |π| = 1 or |π|+ |G⋆
a − π| = 2 + 3 = 5.

It is easy to come up with examples where the gaps are 1 and 2, respectively. The

next examples shows that the other two cases are also possible.

Example 2.4.11. Let (d+,d−) = {(1, 3, 2, 2, 2), (0, 4, 2, 2, 2)}. Figure 2.8(a) shows

a realization G of this bi-sequence, where each undirected edge represents a pair of

edges in opposite directions. Note that ρ(G) = ε(d+,d−)− 4. We claim that ρ(G) =

ρ(d+,d−). If not, then ρ(G⋆) = ε(d+,d−)−2 by Proposition 2.4.10, and the two edges

in G⋆
a form a 2-path π from a to b. Since c, d, e have the same in- and out-degrees

and hence are equivalent, we may assume without loss of generality that π = (a, c, b).

Thus G⋆
a − π is symmetric and corresponds to a simple graph with degree sequence

d̂ = {0, 3, 1, 2, 2}. There is only one simple graph with this degree sequence, which is

shown by the black edges in Figure 2.8(b). When we superimpose π and G⋆
a−π, there

are two edges from (c, b), and hence G⋆ /∈ G(d+,d−), a contradiction.

Example 2.4.12. Let (d+,d−) = {(1, 0, 4, 2, 2, 2), (0, 1, 4, 2, 2, 2)}. Figure 2.9 shows

a realization G of this bi-sequence, where each undirected edge represents a pair of

edges in opposite directions. Note that ρ(G) = ε(d+,d−) − 5. Since the sequence

d+ ∧ d− = {0, 0, 4, 2, 2, 2} is not graphic, Proposition 2.3.1 shows that ρ(d+,d−) <
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ε(d+,d−) − 1. Thus Proposition 2.4.10 yields ρ(G) = ρ(d+,d−). In fact, G is the

only element of G(d+,d−).

a

b

c d

e

f

Figure 2.9: Example 2.4.12.

2.5 Empirical Study

In this section, we conduct an empirical analysis of real networks by comparing

the observed values of reciprocity against the upper bounds. We also look at the

lower bounds on maximum reciprocities given by Algorithm 1.

2.5.1 Datasets

The networks that we analyze include major online social networks (OSN) that

are directed in nature [56, 51, 35, 77, 52]. For the purpose of comparison, we have

also included other types of networks: biological networks [73, 74, 68, 76, 70, 80],

communication networks [52], product co-purchasing networks [52], web graphs [52],

Wikipedias [1], software call graphs [75, 66], and P2P networks [52]. All the datasets

except for Wikipedias are already converted into graph representations by other re-

searchers and the descriptions for the datasets can be found at the cited sources. For

Wikipedias, each node represents a page. Only article pages, i.e. pages with names-

pace ID 0, are included. Pages that redirect to the same page are represented as a

single node corresponding to the destination page. There is an edge from node A

to node B if there is at least one hyperlink from page A to page B. Multiple edges

and self-loops are discarded. Some basic statistics of the networks can be found in

Appendix B.
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Figure 2.10: Scatter plot of empirical reciprocity versus upper bound. Regression line
was fitted without data points for biological, P2P and software call networks.

2.5.2 Empirical Reciprocity vs. Upper Bound

Figure 2.10 shows the scatter plot of empirical reciprocities against the correspond-

ing upper bounds. Here the upper bound is normalized by the number of edges, i.e.,

it is the ratio β(d+,d−)/ε(d+,d−). Note that the reciprocity values vary widely,

ranging from 0 for the peer-to-peer network Gnutella to 90% for the online social

network Slashdot. There is even a fair amount of variation within the categories of

biological, social and Wikipedia networks. In general, social networks and Wikipedia

networks tend to have high reciprocity, while software call networks tend to have

low reciprocity. Note the strong linear correlation between empirical reciprocity and

the upper bound. This is a little bit surprising, especially for the social networks,

in view of the large variations in reciprocity. Related to Figure 2.10 is the scatter
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Figure 2.11: Scatter plot of number of reciprocated edges versus upper bound. Re-
gression line was fitted in log scale, without data points for software call networks.

plot in Figure 2.11 of number of reciprocated edges against the unnormalized bound

β(d+,d−). There the linear relationship in log-log scale is even more apparent, with

biological networks being also around the regression line. These linear relationships

suggest that there might exist some universal mechanism that works across different

domains.

Despite the wide variation in reciprocity, the ratio between the empirical reci-

procity and the normalized upper bound has a much narrower range as shown by the

box plots for the ratios in Figure 2.12.

Note that the ratios are close to zero for the P2P network Gnutella and software

call graphs. The Gnutella exhibits zero reciprocity, far away from the upper bounds

that are above 30%. This is probably because Gnutella implements an indirect reci-

procity mechanism. The low reciprocity for software call graphs is not surprising, as

software codes are usually designed to work in a hierarchical manner. The case for

biological networks are more complicated, as the four biological networks considered
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Figure 2.12: Box plot of reciprocity-bound ratio for different network categories.

here are actually of quite different natures. For example, the C. Elegan neural net-

work and the mouse cortex network are both neural networks, but the former is at the

neuron level while the latter is at a coarser level of cortical regions. One can speculate

that both the low reciprocity in C. Elegan neural network and the high reciprocity in

the mouse cortex network are due to biological reasons. However, we do not know if

this behavior is a norm or an exception due to the lack of data for similar networks.

In all categories other than biological, software call and P2P networks, the ratios

are above 50% with only three exceptions: the wiki-Vote network, the Stack Overflow

Q&A network, and the Spanish Wikipedia. Although we have classified the Stack

Overflow Q&A network as a social network, it differs from typical social networks.

The low reciprocity suggests that there is a hierarchy of expertise. What is more

interesting is the wiki-Vote network and the Spanish Wikipedia, as their behaviors

deviate from those of other networks of the same category, which suggests that there

might be something unusual about them that is worthy of scientific study. Apart from

the three outliers, all other networks in these categories actually achieve a significant
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fraction of the possible reciprocity suggested by the upper bound. This means that

modulo the degree constraints, the tendency to reciprocate is much stronger than the

empirical reciprocity alone might have suggested. Prominent examples include the

web graphs, the Swedish Wikipedia and the Google+ network, whose reciprocities are

not very high in absolute value but quite high relative to the bound. This suggests

that when we study these networks, it might be more meaningful to ask the question

why there is such large imbalance in degrees than to ask the question why the tendency

to reciprocate is low.

2.5.3 Reciprocity of 3-path Optimal Digraphs

In this subsection, we look at 3-path optimal digraphs returned by Algorithm 1.

Note that the reciprocity of such a digraph provides a lower bound on the maximum

reciprocity of the corresponding degree bi-sequence.

Figure 2.13 shows the scatter plot of the reciprocities of the 3-path optimal di-

graphs against the corresponding upper bounds. Figure 2.14 shows the box plots of

their ratios. Note that the reciprocities of 3-path optimal digraphs are close to the

upper bounds, especially for communication, co-purchasing, social and Wikipedia

networks. This means that the maximum reciprocities are also close to the upper

bounds. Therefore, for the degree bi-sequences of those real networks, the fundamen-

tal limit that they impose on reciprocity is largely summarized by the upper bounds,

and the major source of loss in reciprocity is the existence of 3-paths of Types I, II

and III. Thus in practice Algorithm 1 usually suffices for approximating maximum re-

ciprocities and we do not need to worry much about the more complicated suboptimal

structures in Section 2.4.2.2.

Finally, recall from Section 2.4.2.1 that the existence of 3-cycles in a 3-path optimal

digraph requires some specific structures. These structures are usually too special to

occur in practice, so 3-cycles are unlikely to exist in 3-path optimal digraphs. This
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is indeed the case for most of the 3-path optimal digraphs obtained from the real

networks studied here, the anti-symmetric parts of which turn out to be acyclic.

2.6 Conclusion

In this chapter, we showed that the maximum reciprocity problem is NP-hard.

We provided a partial characterization of networks with maximum reciprocity and a

greedy algorithm to eliminate suboptimal motifs. We also provided an upper bound

on reciprocity along with necessary conditions and sufficient conditions for achiev-

ing the bound. We demonstrated that the bound is surprisingly close to the observed

reciprocity in a wide range of real networks, which suggests that the tendency to form

reciprocal edges might be much stronger than the observed reciprocity indicates. We

found surprising linear relationships between empirical reciprocities and the corre-

sponding upper bounds. We showed that a particular type of suboptimal motif called

3-paths is the major source of loss in reciprocity in these networks.
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CHAPTER 3

COMPETITION UNDER CUMULATIVE ADVANTAGE

3.1 Introduction

Growth is a fundamental aspect inherent to most networks that has been widely

investigated both empirically through the analysis of data from various contexts and

theoretically through idealized models. An important driving force behind network

growth and in particular the evolution of node degrees is cumulative advantage (CA),

where accumulated edges (i.e., current node degree) promote gathering even more

edges; see [62] and the reference therein. A second widely-accepted driving force in

this context is fitness, which captures the inherent ability of nodes to attract edges.

Thus, dynamics of network growth is governed by skill (fitness) and luck (random

but biased edge attachment).

Recent work has framed the problem of network growth as a competition among

nodes [50, 72, 63]. In essence, nodes in a network compete with one another to

accumulate edges, increasing (or descreasing) their degrees over time. As expected,

such competitions are also driven by skill and luck and have been studied empirically

and theoretically for different networks, an example of which is the evolution and

predictability of success in citation networks [72]. Outside the domain of networks,

the study of skill and luck competitions has a long history in social and physical

sciences [7, 22].

However, the intricacies of skill and luck competitions are far from trivial, even

in a simple CA model with just two competitors. To illustrate, consider a network

with two hub nodes that compete for connectivity. Each time a new node joins the
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network, it connects to one of the hubs randomly with bias depending on the hubs’

fitnesses (model details given in Section 3.3). In the presence of CA, the bias also

depends on the hubs’ current degrees. Figure 3.1(a) and Figure 3.1(b) illustrate the

difference of the hubs’ degrees over time for two sample paths in the absence and

presence of CA, respectively. The paths with the same color and label in both plots

are generated using the same pseudorandom sequence. The competition is tied every

time the degree difference is zero and we define the competition duration as the

time until the final tie occurs. Note that the red path in Figure 3.1(b) lasts much

shorter than the red path in Figure 3.1(a), while the blue path in Figure 3.1(b) lasts

significantly longer than the blue path in Figure 3.1(a). This suggests a potentially

larger variance in competition duration in the presence of CA. Moreover, with CA

the less fit hub may enjoy a sizable degree leadership for a long time; see the blue

path in Figure 3.1(b). These observations also apply to two specific nodes in more

general network growth models, provided that we interpret “time” as the increase in

the total degrees of the two given nodes. However, are these sample paths anomalies

or the norm? Can we be more precise about these observations?

In this chapter, we aim to develop a fundamental understanding of the effects of

CA in such growth competitions. We approach this problem by considering classical,

simple and well-studied theoretical models for competitions based on skill and luck

that are either coupled with or free of cumulative advantage. These models may not

be general enough as statistical models that fit real-world data for competitions in

growing networks, as such models must capture intricate features of the domain, such

as skill distribution or amplitude of cumulative advantage (e.g., linear or sub-linear),

as well as their time dependency. However, they still provide invaluable insights into

how CA impacts competitions. More specifically, we focus on competitions between

two agents (nodes) and study two fundamental aspects of competitions: duration

– the time required for the most skilled to overtake its competitor and forever en-
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Figure 3.1: Time evolution of degree difference between two nodes in competitions
without and with cumulative advantage (CA). Each plot shows two independently
simulated sample paths. The sample paths with the same color in both plots use the
same sequence of pseudorandom numbers. Competition starts tied and node X is
10% fitter than node Y . See model details in Section 3.3.

joy undisputed leadership; intensity – the number of times competitors tie for the

leadership. In this direction, we make the following main contributions.

• In the case where the two competitors have equal fitness, we obtain the asymp-

totic tail distributions for both duration and intensity of CA competitions. We

demonstrate that they are power laws with respective tail exponents −1/2 and

−1, which are independent of the initial wealth of the competitors.

• In the case where the two competitors have unequal fitness, we derive asymptotic

lower and upper bounds for the tail distribution of duration of CA competitions,

and an upper bound for the tail distribution of their intensity. These bounds

show that duration is heavy tailed while intensity is exponential tailed in the

presence of CA. In particular, duration is heavier tailed while intensity is lighter

tailed than corresponding RW competitions.

• We observe that a slight difference in fitness of the two results in a extremely

heavy tail for duration of CA competitions. Thus, an individual that is only
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slightly more skilled than his competitor might have to hang on to the compe-

tition for an extremely long period of time before taking the ultimate lead, a

phenomenon we call the “struggle of the fittest”.

Despite 90 years since the basic CA model was first proposed [25], known as

Pólya’s urn model, the work in this chapter is, to the best of our knowledge, the

first to characterize the duration and intensity distributions of CA competitions with

skill. We believe our findings have profound implications to our understanding of

competitions, beyond its importance to the evolution of degree of nodes in growing

networks.

The rest of this chapter is organized as follows. Section 3.2 briefly discusses the

related work. Section 3.3 introduces the CA competition model. Section 3.4 presents

the theoretical results, illustrated and supplemented by simulations. Section 3.5 con-

cludes this chapter.

3.2 Related Work

Resource accumulation is an ubiquitous phenomenon that naturally arises in a

variety of social and complex systems. The problem is usually framed as a competition

among agents for resources that are abundant, and has been studied in different

contexts across various disciplines ranging from protein binding within a cell [26, 46]

to views of online social media [14, 29] and citations among scholarly papers [65, 72].

In the context of networks, network growth and in particular node degree evolution

has been recently framed as competition among nodes, where different aspects of

competitions have been studied empirically and theoretically [72, 63, 33, 50, 13].

Models for resource accumulation competitions generally incorporate skill (fit-

ness), luck (randomness) and externalities. Cumulative advantage is one type of

externality that is considered a general mechanism for inequality [22]. It appears in

the literature under many variants such as Price’s cumulative advantage model [65],
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preferential attachment [9, 10, 12], “the rich get richer”, Matthew effect [22, 55, 62],

and path-dependent increasing returns [7]. The Pólya’s urn model [25, 54] is widely

used to capture these effects. Most previous work on Pólya’s urn model and its gen-

eralizations focuses on the share of resources gathered by each agent, also known

as the agent’s market share, proving convergence and limiting results of the market

share distribution [54, 43, 61]. More recent studies consider Pólya’s urn models with

non-linear bias [23], the effects of initial conditions of urns [59, 15], as well as the time

for the first tie [6] and probability of a tie ever occuring [71].

However, two fundamental metrics associated with competitions, duration - how

long it takes for the undisputed winner to emerge, and intensity - how many times

the competitors tie for the leadership, have largely been neglected in the literature.

Previous results establish that the most skilled agent eventually wins [54], and that

average intensity up to time t is approximately (log t)α, where α depends on the

relative skill of the competitors [34, 33]. To the best of our knowledge, no previous

work has provided rigorous characterizations for the distributions of duration and

intensity of competitions in Pólya’s urn models. This chapter partially fills this gap for

the two competitor case and sheds light on some recent approximate results [34, 33].

3.3 Models

In this section, we formally introduce competition models for two competing

agents and give precise definitions for two fundamental metrics of a competition,

i.e. its duration and intensity.

3.3.1 General Setup and Metrics

Let X and Y denote the two agents that engage in the competition. Each agent

is associated with a positive fitness value that reflects its intrinsic competitiveness or

skill level. Let fX and fY denote the fitness of X and Y , respectively, and r = fX/fY
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Xt

Yt

Figure 3.2: State space of competition processes, with an illustration of a sample
path with x0 = 2, y0 = 1, and three ties at time t = 3, 5, 7.

the fitness ratio. Without loss of generality, we assume that fX ≥ fY and hence

r ≥ 1.

The resource that the agents compete for will be generically referred to as wealth,

which is measured in discrete units. The competition starts at time t = 0 with

agents X and Y having x0 and y0 units of initial wealth, respectively. We consider a

discrete-time process. At each time step, one unit of wealth is added to the system

and given to either X or Y . Denote by Xt and Yt the respective cumulative wealth

of X and Y at time t. The complete history of the competition {(Xt, Yt)}∞t=0 then

forms a discrete-time discrete-space stochastic process. The state space S is the first

quadrant of the integral lattice (see Figure 3.2),

S = {(x, y) ∈ Z2 : x ≥ 1, y ≥ 1}.

The initial condition is (X0, Y0) = (x0, y0). How the process evolves over time is

determined by specific competition models, of which the CA competition model to

be introduced in Section 3.3.2 is an example.

We now make the notions of duration and intensity of competitions more pre-

cise by defining them through events of wealth ties. Given a competition process
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{(Xt, Yt)}∞t=0, we say that a tie occurs at time t if Xt = Yt. Figure 3.2 shows three

ties at times t = 3, 5, 7.

The duration T of a competition is defined to be the time of the last tie, i.e.,

T = sup{t ≥ 0 : Xt = Yt}.

When there is no tie, we follow the standard convention that T = sup ∅ = −∞. The

competition ends at time T in the sense that one of the agents takes the lead and

never lose it again after T .

The intensity Nt of a competition until time t is the number of ties that occur by

time t, i.e.,

Nt =
t∑

i=0

1Xi=Yi
,

where 1A is the indicator of event A. The intensity N of a competition is the total

number of ties throughout the competition, i.e., N = limt→∞Nt. This measures

the intensity of the competition in the sense that it counts the number of potential

changes in leadership. Note that T < +∞ if and only if N < +∞.

3.3.2 CA Competition Model

In the CA competition model, the unit of wealth introduced at time t+1 is given

to X with probability

pX,t =
fXXt

fXXt + fY Yt
=

rXt

rXt + Yt
;

otherwise it is given to Y . Note that the transition probability pX,t embodies both

fitness and CA effects (externalities).
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More formally, in the CA competition model, the complete history {(Xt, Yt)}∞t=0

forms a discrete-time Markov chain with stationary transition probabilities. The

transition probability P[(Xt+1, Yt+1) = (x′, y′) | (Xt, Yt) = (x, y)] is given by

QCA,r(x, y;x
′, y′) =



rx

rx+ y
, if (x′, y′) = (x+ 1, y),

y

rx+ y
, if (x′, y′) = (x, y + 1),

0, otherwise.

(3.1)

Note that the transition probabilities are spatially inhomogeneous, i.e., they depend

on the current state (x, y), which makes the analysis difficult, especially when r > 1.

For the purpose of comparison, a RW competition model incorporates skill and

luck but not the CA effect (no externalities), where the transition probabilities are

determined entirely by the fitness ratio r. In particular, the probability that agent X

receives the unit of wealth introduced at any time is always given by

pX =
fX

fX + fY
=

r

r + 1
.

Thus the RW competition model is a discrete-time Markov chain with the same state

space S as the CA competition model, but with the following spatially homogeneous

transition probabilities,

QRW,r(x, y;x
′, y′) =



r

r + 1
, if (x′, y′) = (x+ 1, y),

1

r + 1
, if (x′, y′) = (x, y + 1),

0, otherwise.

The spatial homogeneity of the transition probabilities leads to a more tractable

analysis. In fact, the difference process {Xt − Yt} is a standard biased RW with

parameter r/(r + 1). Thus the abundance of known results for RW [38] can be
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directly translated into results for RW competitions, including duration and intensity

as we have defined in Section 3.3.1.

Throughout the rest of this chapter, we use CA= and RW= to denote CA and

RW competitions with identical fitness (r = 1), respectively. We use CA ̸= and RW ̸=

to denote CA and RW competitions with distinct fitnesses (r > 1), respectively.

Before presenting our results, we point out some connections between the CA and

RW models that are useful in our analysis. In particular, in CA=, all paths connecting

two given states (x0, y0) and (x, y) have the same probability. This is a nice property

that CA= shares with RW, which enables us to leverage existing results on RW in

our analysis of CA=. Unfortunately, this property is lost in CA ̸=, where we resort to

the Chapman-Kolmogorov equation for upper and lower bounds on the probabilities

of interest. In the limiting case where Xt and Yt are both large but comparable to

each other, the connection to RW is again partially retained, a fact we also exploit in

the analysis of CA ̸=.

3.4 Results

In this section we present our theoretical results for duration and intensity distri-

butions, which are also illustrated graphically and supported by extensive numerical

simulations. Table 3.1 provides a summary of our main results along with prior

knowledge about RW competitions from the literature. Note that P(x0,y0)
⟨Model⟩,r denotes

the probability in model ⟨Model⟩ ∈ {CA,RW} with fitness ratio r and initial state

(x0, y0). The following notations have been used in Table 3.1 and will be used through-

out the rest of this chapter.

• f(x) ∼ g(x) if and only if limx→∞ f(x)/g(x) = 1.

• f(x) ≲ g(x) if and only if lim supx→∞ f(x)/g(x) ≤ 1.

• f(x) ≳ g(x) if and only if lim infx→∞ f(x)/g(x) ≥ 1.
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metric ⟨Model⟩ r = 1 r > 1

duration T :

P(x0,y0)
⟨Model⟩,r[T ≥ t]

CA ∼ t−1/2
≲ t−(r−1)x0

≳ t−(r−1)(x0− 1
r
)

RW 1 ≤
[

4r
(r+1)2

]t
intensity N :

P(x0,y0)
⟨Model⟩,r[N ≥ n]

CA ∼ n−1 ≤
(

2
r+1

)n−1

RW 1
(

2
r+1

)n−1

Table 3.1: Tail distributions for duration and intensity of competitions in both RW
and CA models. Multiplicative constants are omitted in all expressions involving t
and n. The RW statistics can be found in most textbooks on the topic, e.g. [38, pp.
113,116].

All proofs are relegated to Appendix C.

3.4.1 Competition Duration

As shown in Table 3.1, RW= competitions never end, i.e., P(x0,y0)
RW,1 [T = ∞] = 1,

while RW̸= competitions are generally very short, whose durations exhibit exponen-

tial tails. The story for CA competitions is drastically different. The introduction

of CA guarantees that a competition always ends, i.e. P(x0,y0)
CA,r [T < ∞] = 1, even

when the two agents are equally fit, which is in sharp contrast to endless RW= com-

petitions. On the other hand, CA fundamentally increases the chance of having a

long-lasting competition between unequally fit agents, as the duration of CA ̸= always

has a power-law distribution, in contrast to a sub-exponential distribution for RW̸=.

Thus, cumulative advantage does not always make competitions shorter as one might

expect.

3.4.1.1 Equal Fitness Case: CA=

The following theorem shows that the duration T for CA= is heavy-tailed with an

asymptotic power-law distribution.
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Theorem 3.4.1. The duration of a CA= competition has the following asymptotic

tail distribution,

P(x0,y0)
CA,1 [T ≥ t] ∼ 1

2x0+y0−5/2
√
πB(x0, y0)

t−1/2, (3.2)

where B(x, y) =
∫ 1

0
sx−1(1− s)y−1ds is the beta function.

It follows from (3.2) that

P(x0,y0)
CA,1 [T <∞] = 1− lim

t→∞
P(x0,y0)
CA,1 [T ≥ t] = 1,

i.e. the duration of CA= is almost surely finite.

Note, however, that the power-law exponent is always −1/2, independent of the

initial wealth x0 and y0. Consequently, although the duration of CA= is finite rather

than infinite as in RW=, the expected duration is still infinite, even if x0 is significantly

larger than y0 or vice versa.

On the other hand, the initial wealth (x0, y0) does affect the multiplicative factor in

(3.2). Figure 3.3 shows the duration distributions from simulations for various values

of initial wealth, with the asymptotes in Eq. (3.2) superimposed. Each simulation

curve is the average of 105 independent runs for 107 time steps each. All curves are

truncated at t = 106, since the empirical distributions will drop down sharply and

become inaccurate as t approaches the cutoff time in simulations. Similar truncations

will be applied to later plots without further mention. Note the good agreement

between theory and simulation in the tails in Figure 3.3. When both x0 and y0

increase but are kept equal, the distribution curve shifts upwards, which means the

competition lasts longer. When the initial wealth of only one agent (y0 here) increases,

the distribution curve shifts downwards, which means the competition is shorter.
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Figure 3.3: Tail distribution for duration of CA= with various (x0, y0). The dots are
simulation results. The solid lines are the asymptotes in Eq. (3.2).

3.4.1.2 Different Fitness Case: CA ̸=

The next theorem shows that the tail distribution of the duration T for CA ̸= is

asymptotically bounded by power laws from both above and below.

Theorem 3.4.2. The tail distribution of the duration of a CA ̸= competition has the

following asymptotic bounds,

φ1 t
−(r−1)x0 ≲ P(x0,y0)

CA,r [T ≥ t] ≲ φ2 t
−(r−1)(x0−1/r), (3.3)

where

φ1 =
Γ(rx0 + y0)

(r + 1)x02x0+y0−1Γ(x0)Γ(y0)
, (3.4)

and

φ2 =
2(r−1)(x0−r−1)Γ(r−1)Γ(rx0 + y0)

(r + 1)(x0 − r−1)Γ(x0)Γ(y0)
, (3.5)

where Γ(x) =
∫∞
0
sx−1e−sds is the gamma function.

It follows from the lower bound that P(x0,y0)
CA,r [T < ∞] = 1 for r > 1, i.e. the

duration for CA ̸= is almost surely finite as is for CA=. The constants φ1 and φ2 are

very loose, so the bounds are best interpreted as bounds on the tail exponent.
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Figure 3.4: Tail distribution for duration of CA̸= with r = 1.2 and various (x0, y0).
The dots are simulation results. The solid lines are the asymptotic lower bound in
Eq. (3.3) but shifted closer to the simulation results for easier visual comparison of
the slopes.

Note that the power-law exponents in the upper and lower bounds depend on

x0 but not on y0, and they differ only by 1 − 1/r < 1. In this sense, the shape of

the distribution at large t is largely determined by the fitness ratio and the initial

wealth of the fitter agent, while the initial wealth of the less fit plays a much weaker

role. This is illustrated in Figure 3.4, which shows the duration distributions from

simulations for r = 1.2 and various values of (x0, y0), alongside the lower bounds from

Eq. (3.3) that are shifted closer to the simulation results for easier comparison of the

slopes. Each simulation curve is the average of 105 independent runs for 109 time

steps each.

Figure 3.4(a) shows how the slopes of the distribution curves, which correspond

to the power-law exponents, depend critically on x0. The impact of x0 is two-fold. As

x0 increases, the distribution curve becomes more tilted as predicted by the bounds.

At the same time, it also shifts downwards. Both changes mean that the competition

tends to be shorter.
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Figure 3.4(b) shows the impact of changing both x0 and y0. When x0 is fixed,

increasing y0 only results in a slight decrease in the absolute value of the slope, in

agreement with Eq. (3.3). The distribution curve shifts upwards, which means the

competition tends to last longer. When both x0 and y0 increase, the situation becomes

more intricate. The curve may shift upwards while bending down faster in the tail,

which could possibly lead to a crossover in the old and new curves, as is the case of

going from (x0, y0) = (1, 1) to (x0, y0) = (3, 3). In this case, the new competition is

more likely to have a medium duration.

3.4.1.3 Struggle-of-the-Fittest Phenomenon

Now we look at the impact of fitness ratio r on duration. Contrasting Eqs. (3.2)

and (3.3) leads to an interesting observation. Departing from CA= by slightly increas-

ing the fitness ratio r from 1 to 1 + ε, where ε is close to 0, precipitates a significant

increase in the probability of long-lasting competitions, as manifested in the discon-

tinuous jump in the power-law exponents from −1/2 in Eq. (3.2) to −εx0 ≈ 0 in

Eq. (3.3). This is opposite to what happens in RW competitions, where a slight in-

crease in fitness departing from RW= to RW̸= transforms the competition from one

that never ends to one with a geometrically distributed duration. The lower bound

in Eq. (3.3) shows that CA ̸= with r < 1 + (2x0)
−1 is more likely to have long-lasting

competitions than CA=, despite the fact that the fitter agent is bound to become the

ultimate winner. We refer to the phenomenon that the fitter agent takes an extremely

long time to win as “struggle of the fittest”.

Figure 3.5 shows the duration of simulated CA competitions for various fitness

ratios r. Each simulation curve is the average of 105 independent runs for 109 time

steps each. Note how the distribution of duration jumps upward from the curve for

CA= to the curve for CA̸= with r = 1.1. It also shows how the curves for CA ̸=
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become more and more tilted as r increases, being roughly parallel to the CA= curve

at r = 1 + (2x0)
−1 = 1.5.

3.4.2 Competition Intensity

Given that CA competitions are long-lasting, one might expect them also to be

intense, i.e., exhibit many ties (Xt = Yt). As we will see in this section, this intuition

is appropriate for CA= but not for CA ̸=.

3.4.2.1 Equal Fitness Case: CA=

The following theorem shows that the intensity N of CA= is heavy-tailed with an

asymptotic power-law distribution.

Theorem 3.4.3. The intensity of a CA= competition has the following asymptotic

tail distribution,

P(x0,y0)
CA,1 [N ≥ n] ∼ 1

2x0+y0−2B(x0, y0)
n−1, (3.6)

where B(x0, y0) is the beta function as in Eq. (3.2).

In this case, the intensity has infinite expectation, as does the duration. Figure 3.6

shows the duration distributions from simulations for various values of initial wealth,
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Figure 3.6: Tail distribution for intensity of CA= with various (x0, y0). The dots are
simulation results. The solid lines are the asymptotes from Eq. (3.6).

with the asymptotes in Eq. (3.6) superimposed. Each simulation curve is the average

of 105 independent runs for 107 time steps each. We observe the same behavior as

in Figure 3.3. When both x0 and y0 increase but are kept equal, the distribution

curve shifts upwards, which means the competition is more intense. When the initial

wealth of only one agent (y0 here) increases, the distribution curve shifts downwards,

which means the competition is less intense.

We mention in passing that if we have a finite observation time tf , the expected

intensity Ntf by time tf grows as log tf , a phenomenon observed for the related CA

model in Godrèche et al. [33].

3.4.2.2 Different Fitness Case: CA ̸=

In sharp contrast, CA ̸= competitions are not intense despite their long durations.

In fact their intensities are surprisingly mild, bounded above by a geometric distri-

bution, as shown in the next theorem.

Theorem 3.4.4. The tail distribution of the intensity of a CA ̸= competition has the

following upper bound,
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Figure 3.7: Tail distribution for intensity of CA with various r. The dots are simula-
tion results. The solid lines are the upper bounds from Eq. (3.7) for r > 1, and the
asymptote in Eq. (3.6) for r = 1.

P(x0,y0)
CA,r [N ≥ n] ≤ C

(
2

1 + r

)n−1

, (3.7)

with

C =


1, x0 ≤ y0,

(y0)x0−y0

(rx0+y0)x0−y0

(
1 + 1

r

)x0−y0 , x0 > y0,

where (x)k =
∏k−1

i=0 (x+ i) is the Pochhammer symbol.

Note that the expectation and all higher moments of N are finite. Therefore,

the intensity of a CA competition changes dramatically when the fitnesses of the

two parties become unequal, the distribution shifting from a power-law tail to an

exponential tail. This is illustrated in Figure 3.7, where each simulation curve is the

average of 105 independent runs for 109 time steps each. An important observation

is that both CA ̸= and RW̸= competitions have intensities that are upper bounded by

identical exponential tails (see Table 3.1), while exhibiting fundamentally different

durations.
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Why are CA̸= competitions simultaneously not intense and long-lasting? The an-

swer resides in the probability of Y being the eventual winner. In CA= competitions,

Y wins with probability y0/(x0+y0), while in CA ̸= competitions Y (the less fit) never

wins. However, for small values of r, especially for those very close to one, the dy-

namics in the initial stages of the competition closely follows that of CA=. Thus there

is a non-negligible chance that Y takes a significant lead, with the CA effect helping

it uphold the lead for a long period of time over which there is no tie. Eventually,

however, the fitness effect outweighs the CA effect, and X catches up with Y . By

then they both have large accumulated wealth, which makes CA̸= behave like RW̸=

in the vicinity of X = Y , allowing X to quickly establish a lead ahead of Y . At

this final stage both fitness and CA effects work in favor of X, and Y stands little

chance in taking the lead again. To summarize, the less fit agent has a non-negligible

probability of taking an early lead which can last for a very long time due to the

CA effect, but it will ultimately surrender the lead to the fitter agent and never lead

again, a phenomenon that we call “delusion of the weakest”, which is the flip-side of

“struggle of the fittest”.

Figure 3.8 illustrates this observation by showing sample paths for different values

of r, all generated using the same sequence of random numbers. Note that for r = 1

(identical fitness), Y wins quickly, whereas for r = 1.1 the fitter agent X, having

trailed behind for a long time, eventually takes over after 69,426 time steps. Finally,

for both r = 1.2 and r = 1.5 agent X has no trouble quickly winning the competi-

tion. These sample paths showcase the long struggle of the “slightly” fitter agent in

competitions with CA effects.

3.4.3 Interplay of Duration and Intensity

In this section, we study the relationship between duration and intensity. Note

that duration gives a natural upper bound N ≤ T/2 for intensity, i.e., the number
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Figure 3.8: “Delusion of the weakest”: sample paths for different values of r (x0 =
y0 = 1), all generated using the same sequence of random bits.

of ties is at most half of the duration in any competition. In CA=, duration and

intensity are strongly and positively correlated. In fact, a tie at time t increases the

probability of having another tie at a time greater than t. More precisely, [6] shows

that for CA=,

P(x0,y0)
CA,1 [T > t|Xt = Yt] ≃ 1− 1√

πXt

. (3.8)

Since Xt ∼ t/2 at a tie, Eq. (3.8) implies that the later a tie occurs, the more likely

another tie will occur, intuitively explaining why long-lasting competitions are also

intense in this case.

Figure 3.9 shows a scatter-plot of duration versus intensity from 104 independent

runs of CA= competitions with x0 = y0 = 1, each simulated for 109 time steps. This

unveils a strong positive linear correlation between the two statistics in log-log scale

(sample Pearson correlation coefficient of 0.94).

Interestingly, CA ̸= shows a different behavior, since even long-lasting competi-

tions exhibit only a small number of ties. Figure 3.10 shows simulation results for

conditional average intensities of competitions with x0 = y0 = 1 and different fitness

ratios r, conditioned on the duration being at least t. Each simulation curve is ob-

tained from 104 independent runs for 109 time steps each. Note that for r = 1, the
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Figure 3.10: Conditional average intensity of competitions conditioned on their du-
ration being at least t, namely E(x0,y0)

CA,r [N | T ≥ t].

conditional average intensity increases linearly with t, but for r > 1, it stabilizes as t

increases. Again, we observe a sharp transition as we move from identical to distinct

fitnesses, this time in the correlation between intensity and duration.

3.5 Discussion and Conclusion

As various empirical studies [67, 72, 69, 22, 63, 62] suggest that real world com-

petitions for resource accumulation are subject to cumulative advantage effects, at

least to some extent, a theoretical understanding of the role of skill and luck in com-
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petition dynamics becomes a pressing issue. Recent theoretical studies [21, 6, 50, 33]

have contributed in this direction.

However, contrary to prior theoretical works, we considered simple and classical

mathematical models that capture just the essence of skill and luck competitions with

and without CA effects, and investigated fundamental aspects of competition, namely

duration (i.e., time until ultimate winner emerges) and intensity (i.e., number of ties

in competition). By considering simple models and simple properties we proved and

illustrated fundamental theoretical results: CA effect exacerbates the role of luck –

power-law tail duration emerges regardless of skill differences, and become extreme

(i.e., infinite mean) when skill differences are small enough. Moreover, duration is

long not necessarily because of intense competition where agents tussle aggressively

for ultimate leadership. On the contrary, under CA, competitions are generally very

mild, exhibiting an exponential tail. Long competitions emerge when an early stroke

of luck places the less skilled in the lead, who can then, boosted by CA effects, enjoy

leadership for a very long period of time. Thus, when CA is present luck sides with

the less skilled.

The non-negligible probability of long-lasting competitions has far-reaching impli-

cations. In the absence of CA, it takes very little time for the fittest agent to establish

dominance, so it is often reasonable to neglect the possibility of a premature burnout.

Such observations are in hand with the “survival of the fittest” principle, since soon

enough the more skilled will prevail. In the presence of CA, however, even agents

with superior fitness may face the challenge of having to endure extremely long com-

petitions. This challenge becomes all more real when the fitness superiority is only

minimal. Will the more skilled survive the seemingly eternal inferiority during the

competition? Under CA time becomes a central issue, with delusion becoming re-

ality if the more skilled burns out during a long struggle. Thus, in the face of CA,
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the fittest survives only if it can persist, which prompts us to rename the principle

“survival of the fittest and persistent” when considering CA competitions.

This observation may also shed light on the seemingly inherent difficulty of pre-

dicting success in real-world competitions by observing ongoing sample paths. Dif-

ferent empirical studies have alluded to this problem [67, 72, 69] as well as recent

model driven studies [21]. Since direct competitions tend to be relatively very short

and skill-differences tend to be small it is well very possible that the winner when

competition ended was not the fittest, adding to the difficulty of making accurate

predictions.
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CHAPTER 4

INFORMATION DISSEMINATION IN SOCIAL
NETWORKS UNDER LIMITED BUDGET OF

ATTENTION

4.1 Introduction

Information dissemination has been transformed by the emergence of online social

networks and their enthusiastic adoption by users. Users rely on trust relationships

in social networks for accessing information. Relationships form on the basis of the

quality of information received, and in turn determine the speed of propagation in

the network.

The literature on information propagation in social networks, or rumor spread-

ing [64] is wide and varied; we mention here only those that are most relevant to

the work in this chapter. Previous work has mostly studied the propagation of a

rumor originating at a given source. The typical model is the randomized broadcast

model [47] which is carried out in synchronized rounds. In each round, each user

selects a neighbor at random and propagates a rumor. The spreading mechanisms

considered have been broadly of three types: push mechanisms where the user sends

the rumor if he has it, to the chosen neighbor; pull mechanisms where the user pulls

the rumor from the chosen neighbor; and a combined mechanism, where the user

pushes the rumor if he has it and pulls it if the chosen neighbor has it. Most previous

work focus on the characterization of the delay in spreading a single rumor to all nodes

(e.g. [20], [17]). An asynchronous model is considered by Amini et al. [4], where each

node contacts a neighbor after a random amount of time; they focus in particular on

random regular graphs and derive performance results in terms of optimal delay.
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What has been overlooked in most previous work is the practical constraint that

each user has a limited budget of attention, that is, a limited frequency with which

he interacts with his neighbors. Each user then has to allocate his limited budget

of attention among his neighbors. There is some work on analyzing the allocation

patterns using real world data. In particular, Backstrom et al. [8] analyze a data

set of real measurements on how users split their attention among their friends on

Facebook. They consider activities such as communication and viewing and show how

the balance of attention varies across activities and other personal characteristics.

Since the level of attention affects information flow [49], the allocation of the budgets

of attention will have an impact on information propagation.

This chapter considers a scenario of information propagation where there are mul-

tiple information sources in the network and each user has a limited budget of at-

tention. Each user allocates his budget strategically with the objective of timely

reception of news. We consider an asynchronous pull model, where each node con-

tacts a neighbor after a random delay and pulls any content available at that neighbor

and the frequency with which he pulls content from neighbors is limited. Our ob-

jective is to identify optimal allocations of this limited frequency among neighbors

for each user in the network and to inform the design of algorithms for optimal in-

formation spread. In particular, we want to answer the question “when users make

selfish decisions on how to allocate their limited access frequency among neighbors,

does information propagate efficiently?” We take the approach of conceiving a gen-

eral model for studying the balance of attention, and an analysis for several network

topologies.

We investigate the efficiency of selfish allocation by considering the metric of

average end-to-end delay of content spread. We make the following contributions:

• We study the efficiency of selfish allocation of the budget of attention by char-

acterizing the price of stability (PoS) for several network topologies.
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• We identify topologies with inefficient propagation under selfish allocations.

• We propose the “plus-one” mechanism, an incentive scheme that coaxes users

into mimicking a gradient-descent algorithm, bringing the cost of content prop-

agation closer to the optimal.

• We present numerical results that compare the optimal, selfish, and feedback-

based allocations.

The rest of this chapter is organized as follows. We define the social network

model in Section 4.2, and present the analysis of optimal and distributed allocation

over several topologies in Section 4.3. In Section 4.4 we present our feedback-based

mechanism. Numerical results follow in Section 4.5 and we conclude in Section 4.6.

4.2 Model Description

We consider a social network where each user has a set of friends, or contacts, that

he links to, or follows, in order to get content such as news updates, videos, or other

messages. Each user then makes all content that he holds available to his followers,

such as on the Facebook wall or Twitter stream. Rather than a single source of

content, we allow all users to create content, at a given rate. Further, we assume

that users seek to obtain all content circulating in the network. Users consult their

contacts for the latest updates of information with the objective of minimizing the

average delay for obtaining all information. As in real online social networks, users

have a limited budget of attention, that is, the total rate at which they may consult

their contacts is limited. As such, this rate must be allocated among the contacts

in a manner that optimizes for delay. We will compare a centralized optimization

of consultation rates with a distributed one where users optimize the allocation in a

selfish manner.
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We model the social network as a directed graph G = (V,E), where V is the set

of users, and E is the set of directed edges between users, i.e. (i, j) ∈ E if and only

if there is an edge from i to j. Denote by N(i) the set of in-neighbors of user i, i.e.

N(i) = {j ∈ V : (j, i) ∈ E}, and let di = |N(i)| be the in-degree of i. We assume

that G is strongly connected.

Each user i ∈ V creates contents according to a Poisson process with rate λi > 0.

When the λi’s are the same, we denote the common value by λ. User i consults his

in-neighbor j ∈ N(i) according to a Poisson process with rate xji. Each user has a

limited budget of attention bi > 0, so that the rates of consultation are constrained

by
∑

j∈N(i) xji = bi. When the bi’s are the same, we denote the common value by b.

In terms of the normalized rates yji = xji/bi, the budget constraint becomes

∑
j∈N(i)

yji = 1. (4.1)

The vector yi = {yji : j ∈ N(i)} represents how user i allocates his budget of attention

among his neighbors, which will be referred to as his strategy. The set of all possible

strategies of user i is the unit simplex ∆i in Rdi . Let y = {yi : i ∈ V } be the strategy

profile of the network, and ∆ =×i∈V ∆i is the set of all possible profiles. Also let

y−i be the strategy profile of all users other than i.

For any i ̸= j, define Dji(y) to be the delay for user i to receive content originated

at user j under profile y. Define the cost for user i to be

Ci(y) =
1

λ−i

∑
j∈V \{i}

λjEDji(y), (4.2)

where λ−i =
∑

j∈V \{i} λj, and define the social cost to be

C(y) =
1

(n− 1)Λ

∑
i∈V

∑
j∈V \{i}

λjEDji(y), (4.3)
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where Λ =
∑

i∈V λi. Note that both (4.2) and (4.3) are independent of any normal-

ization of the λi’s, which just translates a change of units. We set λ = 1 when content

creation rates are homogeneous.

Let C∗ = miny∈∆C(y) be the optimal social cost, and y∗ a profile that minimizes

the social cost C. Let Γ ⊂ ∆ be the set of profiles that are Nash equilibria when

each user minimizes his own cost in a selfish manner. In general there might exist

multiple equilibria. A standard measure of inefficiency of equilibria is the price of

anarchy (PoA). It is defined as the ratio of the cost at the worst equilibrium to that

of an optimal outcome, i.e., maxy∈ΓC(y)/C
∗. We are, however, interested in the best

equilibria, which would give us a benchmark of what’s achievable through distributed

means. As such, we focus on the price of stability (PoS), defined as the ratio of the

cost at the best equilibrium to that of an optimal outcome [58], i.e.,

PoS = min
y∈Γ

C(y)

C∗ =
Ĉ

C∗ , (4.4)

where Ĉ = miny∈ΓC(y) ≥ C∗ is the minimum social cost under a selfish allocation.

Even though the PoS can be seen as a weaker notion of inefficiency, we find it more

interesting in a practical sense, since it gives us a target performance for the design of

distributed algorithms. In some cases, e.g., in a tree network, the Nash equilibrium

is unique, so the PoS coincides with the PoA.

In what follows, we will measure inefficiencies in the selfish allocation of the budget

of attention in several network topologies. We will show that some topologies lead

to large inefficiencies. In Section 4.4 we propose a feedback-based mechanism that

results in a distributed allocation that has a cost closer to the optimal cost than does

the selfish allocation.
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4.3 Efficiency Analysis

We will now study the efficiency of selfish optimization on several social network

topologies. The interest in studying various topologies lies not only in understanding

how existing social networks with those topologies perform, but also in identifying

efficient structures for information dissemination. The latter may inform smart design

for information propagation.

4.3.1 Tree Network

We first consider tree topologies. Such structures are interesting as networks

since information dissemination can be locally tree-like. Let G be a tree; for all tree

networks we study, we will assume G is undirected. Let Tji denote the component

containing j when an edge (j, i) ∈ E is removed. Let λji =
∑

k∈Tji
λk be the aggregate

content creation rate of the nodes in Tji, and nji = |Tji| the number of nodes in Tji.

For i ̸= j, let Pj⇝i be the unique shortest path from j to i. The average delay for

user i to get contents originated in j is then EDji(y) =
∑

e∈Pj⇝i
x−1
e , where xe = xuw

for an edge e = (u,w). Thus the cost for user i is

Ci(y) =
1

λ−i

∑
j:j ̸=i

λj
∑

e∈Pj⇝i

1

xe
=

1

λ−ibi

∑
k∈N(i)

λki
yki

+ f(y−i),

where f(y−i) represents terms that do not depend on yi. Note that f(y−i) can be

infinity for some y−i on the boundary of ∆−i. However, since users are trying to

collect all the information, even selfish users have incentives to keep y in the interior

of ∆ so that no information pathway is effectively cut off. Therefore, we will assume

y is in the interior of ∆, and consequently f(y−i) is finite.

If user i selfishly minimizes Ci, the unique best rate allocation, irrespective of how

others allocate their budgets of attention, is given by
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ŷji =

√
λji∑

k∈N(i)

√
λki

, for j ∈ N(i). (4.5)

Note that in this case each user has a unique best selfish strategy independent of

others’ strategies. Thus there is a unique Nash equilibrium and the PoS coincides

with the PoA.

The social cost can be written as follows,

C =
1

(n− 1)Λ

∑
i∈V

∑
j:i̸=j

λj
∑

e∈Pj⇝i

1

xe

=
1

(n− 1)Λ

∑
(u,w)∈E

1

xuw

∑
i∈V

∑
j:i̸=j

λj1(u,w)∈Pj⇝i

=
1

(n− 1)Λ

∑
(u,w)∈E

1

xuw

∑
i∈Twu

∑
j∈Tuw

λj

=
1

(n− 1)Λ

∑
(u,w)∈E

nwuλuw
yuwbw

=
1

(n− 1)Λ

∑
i∈V

1

bi

∑
k∈N(i)

nikλki
yki

.

Thus the social cost under selfish allocation (4.5) is given by

Ĉ =
1

(n− 1)Λ

∑
i∈V

1

bi

 ∑
j∈N(i)

nij

√
λji

 ∑
j∈N(i)

√
λji

 . (4.6)

However, the socially optimal rate allocation is given by

y∗ji =

√
nijλji∑

k∈N(i)

√
nikλki

, for j ∈ N(i), (4.7)

with the optimal social cost being

C∗ =
1

(n− 1)Λ

∑
i∈V

1

bi

 ∑
j∈N(i)

√
nijλji

2

. (4.8)
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We will now study in more detail specific tree structures: the line, the k-ary tree,

and the chained star networks.

4.3.1.1 Line Network

Suppose G is a line network, with V = {1, ..., n} and (i, i + 1) ∈ E for i =

1, 2, . . . , n− 1 and (i, i− 1) ∈ E for i = 2, . . . , n. Theorem 4.3.1 below gives bounds

on the range of C∗ and Ĉ and an upper bound on the PoS. Note that the upper

bound on PoS does not depend on the content creation rates λi. When the budgets

of attention are homogeneous, we have PoS ≤ 5, but C∗ = Θ(n/b).

Theorem 4.3.1. In a line network of n ≥ 2 nodes, the optimal social cost and the

cost under selfish allocation are bounded as follows,

n+ 1

8bmax

≤ C∗ ≤ Ĉ ≤ n+ 1

bmin

(
9

8
+

1

4n− 4

)
, (4.9)

and

PoS ≤ 5bmax

bmin

, (4.10)

where bmax = maxi bi and bmin = mini bi.

Proof. See Appendix D.1.

When the budgets of attention are heterogeneous, the upper bound in (4.10) can

become arbitrarily large. In this case, the PoS can be arbitrarily large as well, as

shown in Theorem 4.3.2.

Theorem 4.3.2. The PoS can be arbitrarily large when the budgets of attention are

heterogeneous in a line network.

Proof. See Appendix D.2.
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4.3.1.2 Chained Star Network

Consider k star networks, each with p nodes. The hubs of the stars are chained

to form a line network, with a total of n = pk nodes. Such topologies are not

uncommon in social networks based on communities. Such structure might correspond

to communities focused on given topics or interests, that are then connected to the

larger social network. Theorem 4.3.3 shows that while the optimal social cost can be

large, the PoS is of order 1 in the homogeneous case.

Theorem 4.3.3. In a chained star network with n users, homogeneous content cre-

ation rates λ = 1 and homogeneous budgets of attention b, the optimal social cost and

cost under selfish allocation satisfy

C∗ = Θ
(
b−1max{p, k}

)
= Ω(b−1

√
n),

Ĉ = Θ
(
b−1 max{p, k}

)
,

with PoS = Θ(1).

Proof. See Appendix D.3.

Remark. Suppose b = 1. As p changes from Θ(1) to Θ(n), C∗ can have any order

between Θ(
√
n) and Θ(n). In particular, C∗ = Θ(n) for p = 1 and p = n, which

correspond to the line and star networks, respectively.

4.3.1.3 k-ary Tree Network

We now consider rooted trees where each node has k children. Such structures

are of interest for social networks with few edges, as sparse random graphs are locally

tree-like. Theorem 4.3.4 below states the PoS for k-ary trees. Corollary 4.3.5 shows

that this PoS can be arbitrarily large for k of constant order and as k scales sublinearly

with n, even if the content creation rates and budgets of attention are homogeneous.
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Theorem 4.3.4. In a k-ary complete tree with n users, homogeneous content creation

rates λ = 1 and homogeneous budgets of attention b, the optimal social cost and the

cost under selfish allocation satisfy

C∗ = Θ
(
b−1k logk n

)
,

Ĉ = Θ
(
b−1k logk n+ b−1

√
n
)
,

with

PoS =
Ĉ

C∗ = Θ

(
1 +

√
n log k

k log n

)
.

Proof. See Appendix D.4.

Corollary 4.3.5. Let b = 1 and k = Θ(nα).

(1). If α = 0, i.e. k = Θ(1), the costs are C∗ = Θ(log n), Ĉ = Θ(
√
n), and

PoS = Θ(
√
n/ log n).

(2). If 0 < α < 1/2, the costs are C∗ = Θ(nα), Ĉ = Θ(
√
n), and PoS = Θ

(
n1/2−α

)
.

(3). If α ≥ 1/2, the costs are C∗ = Θ(nα), Ĉ = Θ(nα), and PoS = Θ(1).

The above corollary verifies the intuition that long thin networks are less efficient

for information propagation than wide networks. The former type of network thus

would require an incentive-based mechanism to make them more efficient. We will

propose one such mechanism in Section 4.4.

4.3.2 Clique Networks

We now consider the case where G is a clique. This is, in some sense, the best-

case scenario, where users have the widest choice possible in allocating their budget

of attention. The analysis is more involved since there are many paths between each

source-destination pair, creating a more complicated dependency structure between
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the various links. We consider efficiency for the homogeneous case, where λi = 1 and

bi = b. We will show that there exists a selfish profile that is asymptotically optimal,

and thus the price of stability is bounded and approaches one as the network size

increases.

Let us consider the uniform strategy for user i ∈ V , where the consultation rate

is yji = uji = b/di for all j ∈ N(i). Let ui = {uji : j ∈ N(i)} and u−i = {uj : j ∈

V \ {i}}. The profile u = {ui : i ∈ V } is referred to as the uniform profile. For a

clique network, uji = b/(n− 1) for all i ̸= j.

Theorem 4.3.6. For an n-clique with homogenous content creation rates λ = 1 and

budgets of attention b, the social cost Cu of the uniform profile is Cu = b−1Hn−1,

where Hn =
∑n

k=1 k
−1, the n-th harmonic number.

Proof. We follow the approach in [41]. LetDj(m) be the delay for a content originating

from j to reach at least m other users, i.e. Dj(m) is the m-th order statistic of

{Dji : i ∈ V \ {j}} for a given j. Let Vjk = Dj(k) −Dj(k−1), with the convention that

Dj(0) = 0. Thus

∑
i:i ̸=j

Dji =
n−1∑
m=1

Dj(m) =
n−1∑
m=1

m∑
k=1

Vjk =
n−1∑
k=1

(n− k)Vjk. (4.11)

Note that Vjk is exponentially distributed with parameter b
n−1

k(n − k). Taking ex-

pectations of (4.11) we get:

∑
i:i̸=j

EDji =
n−1∑
k=1

(n− k)EVjk =
n−1∑
k=1

n− 1

bk
=
n− 1

b
Hn−1.

Summing over j and dividing by n(n−1), we obtain the social cost Cu = b−1Hn−1.

The next theorem shows that the uniform stratety by a given user is the best

response when all other nodes follow the uniform strategy, showing that this is a

Nash equilibrium.
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Theorem 4.3.7. For an n-clique with homogenous content creation rates 1 and bud-

gets of attention b, the uniform profile is a Nash equilibrium.

Proof. Suppose users i = 1, 2, . . . , n−1 follow the uniform strategy and consider user

n. For a given j,

Djn(yn,u−n) = min
1≤k≤n−1

{
1

ykn
Xkn + Y n

jk

}
,

where {Xkn}n−1
k=1 are i.i.d. exponential random variable with parameter b, and Y n

jk

is the time for an item originating from j to reach k without passing through n.

Note that {Xkn}n−1
k=1 are independent of {Y n

jk}nk=1. Let Tn
j = {T n

ji}n−1
i=1 be the or-

der statistics of Yn
j = {Y n

jk}n−1
k=1 . By symmetry, the random vectors (Y n

j1, . . . , Y
n
j,n−1)

and (T n
jσ(1), . . . , T

n
jσ(n−1)) are identically distributed, where σ is a permutation chosen

uniformly randomly from the symmetric group Sn−1, independently of Tn
j . Therefore,

P[Djn(yn,u−n) > x | Tn
j ]

= P

[
n−1∩
k=1

{Xkn > ykn(x− T n
jσ(k))}

∣∣∣Tn
j

]

= Eσ

[
exp

{
−b

n−1∑
k=1

ykn(x− Tjσ(k))+
}]

≥ exp

{
−b

n−1∑
k=1

yknEσ(x− Tjσ(k))+
}

= exp

{
−b

n−1∑
k=1

ykn

n−1∑
l=1

1

n− 1
(x− Tjl)+

}

= exp

{
−b

n−1∑
l=1

1

n− 1
(x− Tjl)+

}

= P
[
Djn(un,u−n) > x | Tn

j

]
,

where the inequality follows from Jensen’s inequality. Therefore, for j = 1, 2, . . . , n−1,

P [Djn(yn,u−n) > x] ≥ P [Djn(un,u−n) > x] .
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Integrating over x from 0 to∞, we obtain EDjn(yn,u−n) ≥ EDjn(un,u−n) and hence

Cn(yn,u−n) ≥ Cn(un,u−n) for any yn ∈ ∆n. Therefore, the uniform profile is a Nash

equilibrium.

The next theorem shows that the cost of the uniform profile is larger than the

optimal social cost by at most 1/b. Thus the price of stability approaches one as the

network size increases.

Theorem 4.3.8. In any network of size n where every user publishes at rate λ = 1

and has a budget of attention b, the optimal social cost for any user i is lower bounded

by

C∗ ≥ n

b(n− 1)
Hn−1 −

1

b
≥ Cu − 1

b
.

Proof. The argument uses a backwards growth process similar to that used in Section

V of [39]. Assume the process is in steady state, i.e. the process started at −∞.

Consider user i. Let Bi(t) be the set of users whose states at time −t reach user i by

time 0. Note that Bi(0) = {i}. By stationarity and the independence of the publishing

and consulting processes, P[Dji > t] = P[j /∈ Bi(t)]. Now let Aji = inf{t : j ∈ Bi(t)}.

Note that {j /∈ Bi(t)} = {Aji > t}. Thus P[Dji > t] = P[Aji > t], i.e. Dji and

Aji are identically distributed. Now let A(k)i = inf{t : |Bi(t)| = k + 1}. Note that

{A(k)i : 1 ≤ k ≤ n− 1} are the order statistics of {Aji : j ∈ {1, . . . n} \ {i}}.

If we reverse the arrow of time at time 0, then Bi(t) is the set of infected users at

time s in the SI epidemic spreading model where an infected user j contaminates a

susceptible user ℓ at rate byℓj. It then follows that Wki ≜ A(k)i − A(k−1)i is exponen-

tially distributed with parameter µki given by

µki = b
∑

j∈Bi(A(k−1)i)

ℓ/∈Bi(A(k−1)i)

yjℓ ≤ b|Bi(A(k−1)i)| = bk,
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and hence EWki ≥ (bk)−1. It follows that

Ci =
1

n− 1

∑
j:j ̸=i

EDji =
1

n− 1

∑
j:j ̸=i

EAji

=
1

n− 1

n−1∑
k=1

EA(k)i =
1

n− 1

n−1∑
k=1

k∑
ℓ=1

EWℓi

≥ 1

n− 1

n−1∑
k=1

k∑
ℓ=1

1

bℓ
=

n

b(n− 1)
Hn−1 −

1

b
.

The desired result follows by averaging over Ci.

4.3.3 Expander Network

We now consider a network characterized by an expander graph, which might be

considered more realistic. An expander graph is a sparse graph with strong connec-

tivity properties. An example is a d-regular graph which is often used in modeling

social networks.

Finding a Nash equilibrium when the topology is an expander graph turns out to

be quite complex. We thus consider approximate Nash equilibria. We define a user’s

strategy to be an ϵ-approximate NE if the cost to the user under this strategy is no

worse than ϵ more than the cost of any other strategy [58]. More formally, the profile

ŷ is an ϵ-approximate NE if for any k and any ỹk ∈ ∆k,

Ck(ŷ) ≤ ϵ+ Ck(ỹk, ŷ−k).

The ϵ-approximate price of stability is defined by (4.4) with Γ replaced by Γϵ, the set

of ϵ-approximate NE.

Suppose G is an expander network with bounded degree. We now show that the

profile where users implement a uniform allocation of their budget of attention is an

approximate NE.
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Theorem 4.3.9. In any network with homogeneous content creation rates λ and

budgets of attention b, the uniform profile is a d−1
b
-approximate Nash equilibrium,

where d = maxk dk is the maximum degree of the graph.

Proof. Consider user ℓ. For a given j,

Djℓ(yℓ,y−ℓ) = min
k∈N(ℓ)

{
1

ykℓ
Xkℓ + Y ℓ

jk

}
,

where {Xkℓ} are i.i.d. exponential random variable with parameter b, and Y ℓ
jk is the

time for an item originating from j to reach k without passing through ℓ. Define a

random variable K by K = min{k∗ : Y ℓ
jk∗ = mink Y

ℓ
jk}. Since {Y ℓ

jk} are independent

of {Xkℓ}, so is K. Thus

EXKℓ =
∑
k

E[Xkℓ] · P[K = k] = b−1.

We then have the following,

EDjℓ(uℓ,y−ℓ) = E
[
min

k∈N(ℓ)

{
dℓXkℓ + Y ℓ

jk

}]
≤ E

[
dℓXKℓ + Y ℓ

jK

]
=
dℓ
b
+ E

[
min

k∈N(ℓ)
Y ℓ
jk

]
.

On the other hand,

EDjℓ(yℓ,y−ℓ) = E
[
min

k∈N(ℓ)

{
1

ykℓ
Xkℓ + Y ℓ

jk

}]
≥ E

[
min

k∈N(ℓ)

{
1

ykℓ
Xkℓ

}
+ min

k∈N(ℓ)
Y ℓ
jk

]
=

1

b
+ E

[
min

k∈N(ℓ)
Y ℓ
jk

]
.

Thus

EDjℓ(uℓ,y−ℓ) ≤
dℓ − 1

b
+ EDjℓ(yℓ,y−ℓ).

Summing over j and then minimizing over yℓ, we obtain

Cℓ(uℓ,y−ℓ) ≤
dℓ − 1

b
+ min

yℓ∈∆ℓ

Cℓ(yℓ,y−ℓ),
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for any y−ℓ.

In view of Theorem 4.3.8, the next theorem shows that, for an expander network

with edge expansion bounded away from zero, the uniform profile is order optimal,

and hence the d-approximate price of stability is bounded.

Theorem 4.3.10. The social cost Cu of the uniform profile is bounded by

Cu ≤ 2d

bhG
H⌊n/2⌋,

where d = maxi di, and hG is the edge expansion of G defined by

hG = min
|A|⊂V

|∂A|
min{|A|, |Ac|}

,

with ∂A = {(u, v) ∈ E : u ∈ A, v ∈ Ac}.

Proof. The proof is essentially the same as that for Theorem 4.3.6. The difference is

that the exponential random variable Vjk in (4.11) now has parameter µjk given by

µjk = b
∑

u∈Fjk,v∈F c
jk

yuv ≥
b

d
|∂Fjk| ≥

bhG
d

min{k, n− k},

where Fjk is the set consisting of the first k users that has got the content originating

from j, with Fj1 = {j}. Hence

∑
i:i̸=j

EDji ≤
n−1∑
k=1

(n− 1)d

bhG min{k, n− k}
≤ 2d(n− 1)

bhG
H⌊n/2⌋.

The desired result follows by summing over j and dividing by n(n− 1).
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4.4 Incentivizing Efficient Behavior

As we have just seen, topologies can be classified according to their performance

under optimal and selfish allocations as

(1). Efficient: These topologies have bounded PoS and optimal social cost of order

log n; they do not require additional mechanisms. Examples are expanders and

cliques.

(2). Inefficient amenable: These topologies have high PoS yet low (logarithmic)

optimal social cost. As we shall show, incentive mechanisms can be introduced

to change users’ behavior and reduce their otherwise inefficient performance.

Examples are the k-ary tree with bounded degree (k = Θ(1)), and with low-

scaling degree (k = Θ(nα), α≪ 1/2).

(3). Inefficient suboptimal: These topologies show inefficient content spread even un-

der socially optimal allocations. No mechanism that preserves the topology and

the budgets of attention can therefore lead to good performance. Examples are

line and star networks, and k-ary trees with high-scaling degree (k = Θ(nα), α

close to 1/2 and α > 1/2).

We now propose an incentive mechanism that will prove particularly appealing for

inefficient amenable graphs.

4.4.1 The Plus-One mechanism

Our mechanism relies on using incentives as a form of feedback for reallocating

attention. Each receiver k, upon receiving useful information, sends a reward of 1,

that we call a +1, to each node involved in relaying this information from its source s.

Note that by useful information, we mean that the piece of information that arrived

earliest at r, among all copies of this information at r. Therefore, a node sends a +1
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to the neighbor through which the earliest copy was received. We now provide details

of this mechanism.

• Each receiver k, upon reception of useful information from source s, sends a +1k

to each node along the path to s that was involved in relaying that piece of infor-

mation. Each node i along this path then keeps a score Oi
j =

∑
s,k:(j,i)∈P∗

s⇝k
+1k,

where P∗
s⇝k is the quickest (shortest) path from s to k. Note P∗

s⇝k is random

and differs from one sample path to another.

– The receiver is not required to know the topology of the network nor the

path to each source. A completely distributed implementation consists of

each receiver k sending a +1k to the neighbor through which it received the

useful information from s. Each node along the path would then aggregate

the +1s it receives along with its own +1 before sending the sum up to its

neighbor.

• At time intervals that are much longer than the slots over which +1s are sent,

each user i updates his allocation rates as follows,

yji(t+ 1) = yji(t)− γt
(
δji(t)−

∑
k δki(t)

di

)
, (4.12)

where

δji(t) = −
1

n(n− 1)yji(t)2
Oi

j,

and with γt such that
∑∞

t=0 γt =∞, limt→∞ γt = 0.

We refer to the +1s as incentives because, as feedback, they represent the impor-

tance of a link, thus the value of the incentive to provide to bring about a favorable

change in that link’s allocation. In the present chapter we keep these incentives in

quite general forms, but they may be regarded as monetary or non-monetary. Non-

monetary incentives might include a form of reputation or recognition, such as in

networks like Klout [2]. In such networks, users receive votes that count towards
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their reputation or expertise, in return for some service (like answering questions)

they provide to other users. A gain in reputation incites users to respond favor-

ably when there is a possibility of receiving such votes. Note that such a method

incentivizes a user to “serve” other users, thus going beyond a selfish allocation of

attention.

The behavior induced by the Plus-One mechanism turns out to perform a stochas-

tic gradient descent. The +1s collected by a node that correspond to a link e indeed

serve to estimate the gradient of the cost with respect to the allocation on link e, xe.

We now show how δji is an estimate of the gradient of the cost: ∂C
∂yji

. For ease of

exposition we assume homogeneous budgets of attention (bi = 1 for all i) and content

creation rates (λi = 1 for all i). Let {Xe : e ∈ E} be a collection of i.i.d. exponential

random variable with parameter 1. The expected delay from source s to user k can

be written as follows,

EDsk(y) = E

 ∑
e∈P∗

s⇝k

1

ye
Xe

 .
Since the Xe’s are different with probability one, for each realization of the Xe’s, the

shortest path P∗
s⇝k remains fixed for small enough perturbations in the ye’s. The

gradient of the average delay from s to k with respect to edge (j, i) can be estimated

as follows,

∂EDsk

∂yji
= E

[
1(j,i)∈P∗

s⇝k

−1
y2ji

Xji

]
,

where 1A is the indicator of A. From (4.3), the social cost is

C(y) =
1

n(n− 1)

∑
k∈V

∑
s:s̸=k

EDsk.

Thus the gradient of the overall cost is then given by

∂C

∂yji
= − 1

n(n− 1)
E

[
Xji

y2ji

∑
s,k

1(j,i)∈P∗
s⇝k

]
.
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An estimator δ̃ji of
∂C
∂yji

can then be written as follows,

δ̂ji = −
1

n(n− 1)y2ji

∑
s,k

1(j,i)∈P∗
s⇝k

.

Note that δ̂ji corresponds exactly to δji, with O
i
j =

∑
s,k 1(j,i)∈P∗

s⇝k
.

A study of the convergence properties of the Plus-One mechanism requires a care-

ful analysis of the interchange of expectation and differentiation, which will not be

pursued in the present chapter. Indeed results from simulations presented in Sec-

tion 4.5 show convergence for all graphs that we consider.

4.4.2 Inefficient Suboptimal Graphs

The Plus-One mechanism performs well for the inefficient amenable graphs: the

PoS is reduced and the cost under this distributed mechanism is very close to optimal,

as we will see in Section 4.5. For inefficient suboptimal graphs, however, regardless

of the PoS, the optimal social cost is still quite high. Our results from Section 4.3

show that line and star networks, and k-ary trees with k = Θ(nα), α > 0, fall in

this category of graphs. For such topologies, incentive mechanisms that promote only

shifting of attention are not sufficient. More complex mechanisms that change the

graph structure, or modify the budgets of attention of some nodes would seem more

suitable. We leave the study of such mechanisms for future work.

4.5 Simulation Results

We now perform simulations to verify our efficiency results and validate the Plus-

One (PO) mechanism. For each network topology, we ran a discrete-event simulation

for three different scenarios. In the first scenario, the PO mechanism is implemented,

so that the users are incentivized to minimize the social cost. In the second scenario,

the users behave selfishly, so they optimize only for their own cost. The tuning of
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their allocation of attention is similar to the PO mechanism except that since there

is no reward from the downstream users, there is only a local optimization. In the

first two scenarios, the initial allocation of attention is uniform for all users, which is

reasonable without prior knowledge of the network. In the third scenario, the users

do not tune their allocation, and maintain the uniform strategy.

We set the each user’s publishing rate λi to λ = 1 and the budget of attention bi to

b = 1. The users update their allocation every 100 time units. We ran the simulation

for length of time long enough so that the network reaches steady state as illustrated

in Figure 4.1, which shows the average delay over time in a complete ternary tree

with 1093 nodes. The average is taken within a window of 100 time units, the same

as the interval between successive updates. We observe convergence around a small

set of values in all scenarios for all topologies we consider.

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

 0  2000  4000  6000  8000  10000

av
er

ag
e 

de
la

y

time

Plus-One
Selfish

Uniform

Figure 4.1: Average delay over time in a complete ternary tree with 1093 nodes.

We now study the steady-state average delay for various network topologies. For

almost all cases we will plot the average delay derived from both theoretical and

simulation results. Figure 4.2 plots the average delay over increasing network size

for a line network. The PO mechanism indeed improves upon the selfish allocation,
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achieving a cost close to the theoretical optimal social cost. Note however that the

optimal social cost scales linearly with the network size. This line network is an

example of inefficient suboptimal graphs that needs additional mechanisms beyond

PO to improve the linear cost.
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Figure 4.2: Average delay against network size for a line network.

Figure 4.3 plots the average delay against network size for complete k-ary trees

with k = 4. The PO mechanism achieves the theoretical optimal social cost, which

scales logarithmically with the network size. The social cost of the uniform strategy

is only slightly higher than the optimal social cost, though the gap is increasing as the

network size increases. In contrast, the cost for the selfish optimization is significantly

higher, and increases much faster (∼ n1/2) with the network size. This topology is an

example of an inefficient amenable graph shows the power of the PO mechanism, in

bringing the social cost down to one very close to the optimal cost.

Figure 4.4 plots the average delay in random 3-regular networks. Since random

d-regular graphs have good expansion property with high probability, we know from

Theorems 4.3.9 and 4.3.10 that the uniform strategy achieves a social cost that scales

logarithmically, and that it is a 3-approximate NE. Figure 4.4 shows that the costs
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Figure 4.3: Average delay against network size for complete quaternary tree.

associated with PO, selfish optimization and the uniform strategy actually coincide

for the network scales used in the simulation. This expander graph is an example of

the efficient graphs, where the diversity of paths leads to optimal social costs without

incentive mechanisms.

4.6 Conclusion and Future Work

This chapter has shown that social network topologies can be categorized into

three classes according to efficiency of information spreading: efficient, inefficient

amenable, and inefficient suboptimal. This chapter has also proposed the Plus-

One mechanism, an incentive-based mechanism that brings the costs in inefficient

amenable graphs close to optimal. Inefficient suboptimal graphs, on the other hand,

are resilient to our mechanism, in that the cost under distributed attention allocation

is reduced close to the optimal social cost, but the optimal social cost itself is quite

high. For such graphs, mechanisms that go beyond incentives for attention shifting,

those that induce a change in graph structure or in the budgets of attention are

needed.
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Figure 4.4: Average delay against network size for random 3-regular network.

We have demonstrated the effectiveness of the Plus-One mechanism by simula-

tion. However, it will be of interest to have a formal investigation of its convergence

property and provable performance guarantee.

We have assumed in the present chapter that all users are interested in receiving

information from all sources. As an extension of the present chapter, we may con-

sider a more interesting and realistic case where users have differing sets of interests.

Mechanism design for such scenarios is decidedly more complex, with a more intricate

contact structure.
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

This thesis studied various aspects of networks characteristics and dynamics, with

focus on reciprocity, competition and information dissemination.

Chapter 2 investigated the maximum reciprocity problem and its use with re-

gard to the interpretation of empirical reciprocity in real networks. We proposed to

interpret empirical reciprocity based on its comparison with the maximum possible

reciprocity. We proved that the maximum reciprocity problem is NP-hard, so we did

the comparison with an upper bound instead. We found that this bound is surpris-

ingly close to the empirical reciprocity in a wide range of real networks, and that

there is a surprisingly strong linear relationship between the two. We demonstrated

that a particular type of small suboptimal motifs called 3-paths are the major cause

for suboptimality in real networks.

There are several future directions related to Chapter 2. Given the usefulness

and NP-hardness of the maximum reciprocity problem, it is of interest to design ap-

proximation algorithms with performance guarantee. The linear relationship between

empirical reciprocity and the upper bound is intriguing and invites a careful study

for its explanation. In Chapter 2, we fixed the degree sequence. It will be useful to

consider small perturbation to the degree sequence and study the robustness of the

results. We focused on maximum reciprocity with given degree constraints. To get

a complete picture, it is necessary to study the full spectrum of reciprocity and in

particular its minimum. More broadly, there are many other network characteristics

of interest, whose interdependence is worthy of investigation.
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Chapter 3 analyzes competition dynamics under cumulative advantage. We char-

acterize the tail distributions of duration and intensity for pairwise competition under

cumulative advantage. We demonstrate that duration always has a power-law tail ir-

respective of competitors’ fitness, while intensity has either a power-law tail or an

exponential tail depending on whether the competitors are equally fit. We observe

the struggle-of-the-fitness phenomenon, where a slight different in fitness results in

an extremely heavy tail of duration distribution.

For future work, it is of interest to close the gap between the asymptotic upper

and lower bounds for the duration distribution when the competitors are not equally

fit. Another direction is to extend the results to more than two competitors and

eventually to the full network setting.

Chapter 4 studied the efficiency of information dissemination in social networks

with limited budget of attention. We quantified the efficiency of information dissem-

ination for both cooperative and selfish user behaviors in various network topologies.

We identified topologies where cooperation plays a critical role in efficient information

propagation. We proposed an incentive mechanism called “plus-one” to coax users

into cooperation in such cases, and demonstrated its effectiveness through simulation.

Future investigation is needed for the convergence property and provable perfor-

mance guarantee of the “plus-one” mechanism. An analysis of power-law networks

will be be valuable, since many social networks exhibit power-law degree distributions.

Another natural extension is to allow users to have differing sets of interests.
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APPENDIX A

ADDITIONAL PROOFS FOR CHAPTER 2

A.1 Proof of Theorem 2.3.7

We adapt the proof for Theorem 2.2 of [16] that deals with packing two graphic

sequences for undirected graphs. Without loss of generality, we can assume that

V0 = V , since removing isolated vertices does not change the conclusion. Assume

that conditions (1)–(3) hold and consider the set G of all pairs of digraphs (G1, G2)

such that

(i). G1 is symmetric with degree bi-sequence (d0,d0),

(ii). G2 has degree bi-sequence (d+ − d0,d− − d−),

(iii). the union G = G1 +G2, as a multi-digraph, has degree bi-squence (d+,d−).

Note that G1 can be identified with an undirected graph with degree sequence d0.

Conditions (1) and (2) guarantee that G ̸= ∅. Among all pairs in G, choose a pair

(G1, G2) such that the number of shared edges |G1 ∩G2| is minimized. We will show

that G1 ∩G2 = ∅, so their union G = G1 +G2 is a realization of (d+,d−) and hence

ρ(d+,d−) ≥ ρ(G) ≥ |G1| = 2
∑

i d
0
i ≥ 2m. To this end, we will show that condition

(iii) would be violated if G1 ∩G2 ̸= ∅.

Assume there exists an edge (x, y) ∈ G1∩G2. SinceG1 is required to be symmetric,

for the sake of notational simplicity, we will use the same notation (a, b) for a single

edge to refer to the pair of edges (a, b) and (b, a) in G1, which is represented pictorially

by an undirected edge.
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x y

v w

×

×
(a)

x y

v w

×

×
(b)

x y

v w

×

×
(c)

Figure A.1: Proof of Claims 1–3. The number of shared edges is reduced by rewiring
the edges marked by red crosses into the dashed green edges. Each undirected edge
represents a pair of reciprocated edges.

For v ∈ V , let NG(v) = {u : (v, u) ∈ G} be the out-neighbors of v in G and

N−
G (v) = {u : (u, v) ∈ G} the in-neighbors of v in G. Let NG(v) = N+

G (v) ∪ N
−
G (v)

be the neighbors of v in G. For W ⊂ V , let N+
G (W ) =

∪
w∈W N+

G (w), N
−
G (W ) =∪

w∈W N−
G (w) and NG(W ) = N+

G (W ) ∪ N−
G (W ). We use the convention N+

G (∅) =

N−
G (∅) = NG(∅) = ∅. For V1, V2 ⊂ V , let V1 ⊗ V2 = {(v1, v2) ∈ V1 × V2 : v1 ̸= v2}.

Now consider I = V − [NG(x) ∪ NG(y)]. Let W 1 = NG1(I), W
2(I) = N+

G2
(I) ∩

N−
G2
(I), W+ = N+

G2
(I) − N−

G2
(I) and W− = N−

G2
(I) − N+

G2
(I). Note that NG(I) =

W 1 +W 2 +W+ +W−.

We break the proof into several claims.

Claim 1. W 1 ⊂ NG(x) ∩NG(y).

Proof. SupposeW 1 ̸= ∅. Let w ∈ W 1 and v ∈ I such that (v, w) ∈ G1. If w /∈ NG(x),

then G′
1 = G1 − {(x, y), (v, w)}+ {(x,w), (y, v)} would reduce the number of shared

edges; see Figure A.1(a). Therefore, w ∈ NG(x). Similarly, w ∈ NG(y).

Claim 2. N+
G2
(I) ⊂ N+

G (x).

Proof. Suppose N+
G2
(I) ̸= ∅. Let w ∈ N+

G2
(I) and v ∈ I such that (v, w) ∈ G2. If

w /∈ N+
G (x), then G

′
2 = G2−{(x, y), (v, w)}+{(x,w), (v, y)} would reduce the number

of shared edges; see Figure A.1(b). Therefore, w ∈ N+
G (x).

Claim 3. N−
G2
(I) ⊂ N−

G (y).

85



x y

w1 w2

z1 z2

×

× ×

(a) w1, w2 ∈W 1.

x y

w1 w2

z1 z2

×

× ×

(b) w1 ∈ N−
G2

(I), w2 ∈ N+
G2

(I).

Figure A.2: Proof of Claims 4–5. The number of shared edges is reduced by rewiring
the edges marked by red crosses into the dashed green edges. Each undirected edge
represents a pair of reciprocal edges.

Proof. Suppose N−
G2
(I) ̸= ∅. Let w ∈ N−

G2
(I) and v ∈ I such that (w, v) ∈ G2. If

w /∈ N−
G (y), then G

′
2 = G2−{(x, y), (v, w)}+{(x, v), (w, y)} would reduce the number

of shared edges; see Figure A.1(c). Therefore, w ∈ N−
G (y).

It follows from Claims 2 and 3 that W 2 ⊂ N+
G (x) ∩ N

−
G (y), W

+ ⊂ N+
G (x) and

W− ⊂ N−
G (y). Note that NG(I) ⊂ NG(x)∪NG(y) = Ic. As a result, there is no edge

with both ends in I.

Claim 4. There exists an edge in G between every pair of distinct vertices in W 1.

Proof. Let w1, w2 ∈ W 1 and z1, z2 ∈ I such that (zi, wi) ∈ G1 for i = 1, 2, where

z1 are z2 are not necessarily distinct. If (w1, w2) /∈ G and (w2, w1) /∈ G, then G′
1 =

G1−{(x, y), (w1, z1), (w2, z2)}+{(x, z1), (y, z2), (w1, w2)} would reduce the number of

shared edges; see Figure A.2(a). Therefore, either (w1, w2) ∈ G or (w2, w1) ∈ G.

Claim 5. N−
G2
(I)⊗N+

G2
(I) ⊂ G.

Proof. Let (w1, w2) ∈ N−
G2
(I) ⊗ N+

G2
(I). Let z1, z2 ∈ I such that (w1, z1) ∈ G2

and (z2, w2) ∈ G2, where z1 are z2 are not necessarily distinct. If (w1, w2) /∈ G,

then G′
2 = G2 − {(x, y), (w1, z1), (z2, w2)} + {(x, z1), (z2, y), (w1, w2)} would reduce

the number of shared edges; see Figure A.2(b). Therefore, (w1, w2) ∈ G.

As a result of Claim 5, W 2 ⊗W 2 ⊂ G and W− ⊗W+ ⊂ G.
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x y

w1 w2

z1 z2 z3

×

× × ×

(a) (w1, w2), (w2, w1) /∈ G.

x y

w1 w2

z1 z2 z3

×

×

× ×

(b) (w1, w2) /∈ G, (w2, w1) ∈ G.

xy

w1 w2

z1 z2z3

×

×

× ×

(c) (w1, w2) ∈ G, (w2, w1) /∈ G.

Figure A.3: Proof of Claim 6. The number of shared edges is reduced by rewiring
the edges marked by red crosses into the dashed green edges, where w1 ∈ W 1 and
w2 ∈ W 2. Each undirected edge represents a pair of reciprocal edges.

Claim 6. W 1 ⊗W 2 ⊂ G and W 2 ⊗W 1 ⊂ G.

Proof. Let w1 ∈ W 1, w2 ∈ W 2 be such that w1 ̸= w2. Let z1, z2, z3 ∈ I be such that

(w1, z1) ∈ G1, (z3, w2) ∈ G2 and (w2, z2) ∈ G2, where z1, z2, z3 are not necessarily

distinct. We will show that if (w1, w2) /∈ G or (w2, w1) /∈ G, we would be able to

find a new pair of graphs (G′
1, G

′
2) ∈ G such that |G′

1 ∩G′
2| < |G1 ∩G2|, which would

contradict the choice of (G1, G2). Consider three cases.

(i). If (w1, w2) /∈ G, (w2, w1) /∈ G, then let

G′
1 = G1 − {(x, y), (w1, z1)}+ {(x, z1), (w1, w2)},

G′
2 = G2 − {(z3, w2), (w2, z2)}+ {(z3, y), (y, z2)};

see Figure A.3(a).

(ii). If (w1, w2) /∈ G, (w2, w1) ∈ G, then let

G′
1 = G1 − {(w1, z1)}+ {(w1, w2)},

G′
2 = G2 − {(x, y), (z3, w2), (w2, w1)}+ {(z3, y), (x, z1), (z1, w1)};
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see Figure A.3(b).

(iii). If (w1, w2) ∈ G, (w2, w1) /∈ G, then let

G′
1 = G1 − {(w1, z1)}+ {(w1, w2)},

G′
2 = G2 − {(x, y), (w1, w2), (w2, z2)}+ {(x, z2), (w1, z1), (z1, x)};

see Figure A.3(c).

Therefore, (w1, w2) ∈ G, (w2, w1) ∈ G.

Claim 7. ∆ ≥ 3.

Proof. Note that ∆ ≥ 2 since d+x + d−x − d0x ≥ d+x ≥ 2. If ∆ = 2, then NG(x) = {y}

and NG(y) = {x}. Thus NG(I) ⊂ {x, y}. But x, y /∈ NG(I) by the definition of I.

Therefore, NG(I) = ∅, and hence d+v = d−v = 0 for every v ∈ I = V − {x, y}. It then

follows that δ = ∆ = 2 and n = 2. A direct calculation shows that condition (3) is

violated. Therefore, ∆ ≥ 3.

Now consider the cut (I, Ic). Let W 0 = W 1 ∪W 2. Let w0 = |W 0|, w+ = |W+|,

w− = |W−|. We will count the number of edges across the cut in a special way. An

edge from G2 in either direction is counted as one edge, while a pair of reciprocal

edges from G1 is counted as one edge. Note that the number of edges across the cut

is bounded by

E(I, Ic) ≥ δ|I| = δ(n− |Ic|),

since each vertex in I contributes at least δ edges. Note that |NG(x)| ≤ ∆ − 1 and

|NG(y)| ≤ ∆−1, since the edge (x, y) has multiplicity 2. Since W 0 ⊂ NG(x)∩NG(y),

|Ic| = |NG(x) ∪NG(y)| = |NG(x)|+ |NG(y)| − |NG(x) ∩NG(y)| ≤ 2∆− 2− w0,
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and hence

E(I, Ic) ≥ δ(n− 2∆ + 2 + w0).

On the other hand, each vertex inW 0 must connect to x, y and every other vertex

in W 0, and hence contributes at most ∆ − 1 − w0 edges to E(I, Ic). Each vertex

in W+ must connect to x and every vertex in W−, and hence contributes at most

∆ − 1 − w− edges to E(I, Ic). Similarly, every vertex in W− contributes at most

∆− 1− w+ edges to E(I, Ic). Therefore,

E(I, Ic) ≤ w0(∆− 1− w0) + w+(∆− 1− w−) + w−(∆− 1− w+).

Combining the two inequalities for E(I, Ic), we obtain

f(w0, w+, w−) ≥ δ(n− 2∆ + 2),

where

f(w0, w+, w−) = w0(∆− δ − 1− w0) + w+(∆− 1− w−) + w−(∆− 1− w+).

Note that w0 + w+ ≤ |NG(x) − {y}| ≤ ∆ − 2. Similarly w0 + w− ≤ ∆ − 2. If we

maximize f subject to these feasibility constraints, the inequality should still hold.

Claim 8. The maximum value of f(w0, w+, w−) subject to the following constraints

w0 + w+ ≤ ∆− 2,

w0 + w− ≤ ∆− 2,

w0, w+, w− ≥ 0,

is f ⋆ = (∆− 2)(∆− 1).
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Proof. Note that f ⋆ is achieved by w0 = w− = 0 and w+ = ∆ − 2. Thus it remains

to show that f ≤ f ⋆ for all feasible (w0, w+, w−). For fixed w0 and w+, f is linear

in w−, where w− ∈ [0,∆ − 2 − w0]. Thus in order to maximize f , we only need to

consider w− ∈ {0,∆ − 2 − w0}. By the same argument, we only need to consider

w+ ∈ {0,∆− 2−w0}. Since f is symmetric in w+ and w−, we only need to consider

three cases.

(i). w+ = w− = 0. In this case, 0 ≤ w0 ≤ ∆− 2, and

f(w0, 0, 0) = w0(∆− δ − 1− w0) ≤ (∆− 2)(∆− δ − 1) < f ⋆.

(ii). w− = 0 and w+ = ∆− 2− w0. In this case,

f(w0, w+, 0) = w0(∆−δ−1−w0)+(∆−2−w0)(∆−1) = f ⋆−w0(w0+δ) ≤ f ⋆.

(iii). w+ = w− = ∆− 2− w0. In this case,

f(w0, w+, w−) = w0(∆− δ − 1− w0) + 2(∆− 2− w0)(w0 + 1)

= w0(3∆− δ − 7− 3w0) + 2(∆− 2)

≤ w0(3∆− 8− 3w0) + 2(∆− 2).

If ∆ = 3, then w0 ∈ {0, 1} and

f(w0, w+, w−) ≤ w0(1− 3w0) + 2 ≤ 2 = f ⋆.

If ∆ ≥ 4, set w0 = (3∆− 8)/6 and

f(w0, w+, w−) ≤ 1

12
(3∆− 8)2 + 2(∆− 2).
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Thus

f ⋆ − f ≥ (∆− 1)(∆− 2)− 1

12
(3∆− 8)2 − 2(∆− 2) =

1

4
∆(∆− 4) +

2

3
≥ 0.

Therefore, f ≤ f ⋆ for all feasible (w0, w+, w−), which completes the proof.

Now we have

(∆− 1)(∆− 2) = f ⋆ ≥ δ(n− 2∆ + 2),

and hence

∆ ≥

√
δn+

(
δ − 1

2

)2

+
3

2
− δ.

which violates condition (3). Therefore, G1 ∩G2 = ∅ as desired.

A.2 Proof of Proposition 2.4.2

Let G(i) and S(i) be the digraph G and the set S before the i-th iteration of the

while loop of lines 2–10. Given a vertex v, let Π
(i)
v be the set of 3-paths in G(i)

that starts at v, and Π̃
(i)
v ⊂ Π

(i)
v the set of non-Type IV 3-paths. We first prove the

following: If Π̃
(i)
v ̸= ∅, then v ∈ S(i). This trivially holds for i = 1 since S(1) = V .

Assume it holds for the i-th iteration. Consider the (i + 1)-st iteration. Let w0 be

such that Π̃
(i+1)
w0 ̸= ∅. Let v0 the node picked on line 3 of the i-th iteration. Consider

two cases.

(1). Suppose the condition on line 4 is false. In this case, G(i+1) = G(i) and hence

Π̃
(i)
w0 = Π̃

(i+1)
w0 ̸= ∅. Thus w0 ̸= v0, and, by the induction hypothesis, w0 ∈ S(i).

By line 8, S(i+1) = S(i) − {v0}, so w0 ∈ S(i+1).

(2). Suppose the condition on line 4 is true. Let π = (v0, v1, v2, v3) be the 3-path

rewired in the i-th iteration. Since S(i+1) = S(i) ∪ {v1, v2} by line 6, by the

induction hypothesis, it suffices to show that Π
(i)
w0 ̸= ∅ for w0 /∈ {v0, v1, v2, v3}.
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Assume w0 /∈ {v0, v1, v2, v3}. If π is of Type III, then G
(i+1)
a ⊂ G

(i)
a and hence

∅ ̸= Π̃
(i+1)
w0 ⊂ Π̃

(i)
w0 . Now suppose π is of Type I or II. Pick a 3-path π1 =

(w0, w1, w2, w3) ∈ Π̃
(i+1)
w0 . Note that the only edge in G

(i+1)
a \ G(i)

a is (v0, v3).

Since (w0, w3) /∈ G
(i+1)
a and w0 ̸= v0, we obtain (w0, w3) /∈ G

(i)
a . If π1 ∈ Π

(i)
w0 ,

then π1 ∈ Π̃
(i)
w0 . If π1 /∈ Π

(i)
w0 , then either (w1, w2) or (w2, w3) must be the

newly added edge (v0, v3). Suppose (w1, w2) = (v0, v3). Then π2 = (w0, w1 =

v0, v1, v2) ∈ Π
(i)
w0 . If (w0, v2) /∈ G

(i)
a , then π2 ∈ Π̃

(i)
w0 . If (w0, v2) ∈ G

(i)
a , then

π3 = (w0, v2, v3 = w2, w3) ∈ Π
(i)
w0 . Since (w0, w3) /∈ G

(i)
a , π3 ∈ Π̃

(i)
w0 . Thus

Π̃
(i)
w0 ̸= ∅ if (w1, w2) = (v0, v3). The same argument shows that Π̃

(i)
w0 ̸= ∅ if

(w2, w3) = (v0, v3). Therefore, Π̃
(i)
w0 ̸= ∅ for all cases.

Therefore, Π̃
(i)
v ̸= ∅, then v ∈ S(i). When Algorithm 1 terminates, S = ∅, so

there is no non-Type IV 3-paths. Now it remains to show that Algorithm 1 indeed

terminates. For this purpose, let Xi = |S(i+1)| − |S(i)|. Let Yi = 1 if if the i-th

iteration rewires some 3-path and Yi = 0 otherwise. Note that if Yi = 1, 0 ≤ Xi ≤ 2

and |G(i+1)
a | ≤ |G(i)

a | − 2; otherwise, Xi = −1 and |G(i+1)
a | = |G(i)

a |. After the i-th

iteration,

0 ≤ |G(i+1)
a | ≤ |G(1)

a | − 2
i∑

j=1

Yj,

and hence 2
∑i

j=1 Yj ≤ |G
(1)
a | ≤ |E|. Thus

|S(i+1)| = |S(1)|+
i∑

j=1

Xj

≤ |V |+ 2
i∑

j=1

Yj −
i∑

j=1

(1− Yi)

= |V | − i+ 3
i∑

j=1

Yj

≤ |V |+ 3

2
|E| − i.

It follows that Algorithm 1 terminates in at most |V |+ 3
2
|E| iterations.
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A.3 Proof of Lemma 2.4.8

We break the proof into several claims.

Claim 1. (E0 ∪ E1) ∩G⋆
a = ∅.

Proof. For k < ℓ, let π[vk, vℓ] be the sub-path of π from vk to vℓ. Suppose there exists

(vi, vj) ∈ (E0 ∪ E1) ∩G⋆
a. Note that i ≡ j mod 2. If i < j, then π[v0, vi] + (vi, vj) +

π[vj, v2p] is a path of odd length 2p+1+i−j, which requires (v0, v2p) ∈ G⋆
a by Lemma

2.4.3, a contradiction. If i > j, then π[vj, vi]+(vi, vj) is a cycle inG
⋆
a. By Lemma 2.4.4,

this must be a 3-cycle and i = j+2. By symmetry, we can assume j ≥ 1. Lemma 2.4.5

applied to vj−1 and the 3-cycle (vj, vj+1, vi, vj) then requires (vj−1, vj+1) ∈ G⋆
a, which

we have just shown is impossible. Therefore, (E0 ∪ E1) ∩G⋆
a = ∅.

By virtue of Claim 1, a pair of edges (vi, vj) and (vj, vi) of E0∪E1 are either both

in G⋆ or both outside G⋆. Thus we only need to consider (vi, vj) ∈ E0 ∪E1 for i < j.

Claim 2. Either (v0, v2p) ∈ G⋆ or (v1, v2p−1) ∈ G⋆.

Proof. Suppose the contrary. By Claim 1, (v0, v2p) /∈ G⋆
u and (v1, v2p−1) /∈ G⋆

u. Let

H = G⋆ − {(v0, v1), (v2p−1, v2p)} + {(v0, v2p), (v2p−1, v1)}. Then ρ(H) = ρ(G⋆) and

hence H is also a maximum digraph. Now π[v1, v2p−1] + (v2p−1, v1) is a (2p− 1)-cycle

in Ha. If p > 2, this contradicts Lemma 2.4.4. If p = 2, this contradicts Lemma 2.4.5

since (v0, v1) /∈ Ha but (v0, v2p−1) ∈ Ha by applying Lemma 2.4.3 to π[v0, v2p−1].

Claim 3. If (v0, v2p) ∈ G⋆, then G⋆ ∩ E1 = ∅ and E0 ⊂ G⋆.

Proof. Suppose (v2i−1, v2j−1) ∈ G⋆, where j > i ≥ 1. Note that (v2i−1, v2p) ∈ G⋆
a by

Lemma 2.4.3. Then C = π[v0, v2j−1]+ (v2j−1, v2i−1, v2p, v0) satisfies the assumption of

Lemma 2.4.6. Thus there exists an H ∈ G(d+,d−) with ρ(H) = ρ(G⋆) + 2(j − 1) >

ρ(G), a contradiction. Therefore, (v2i−1, v2j−1) /∈ G⋆ and hence E1 ∩G⋆ = ∅.

93



v0 v1 v2

v3

v4v5v6

×

×
×

(a) p = 3, i = 1, j = 2.
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(b) p = 2, i = 0, j = 1.

Figure A.4: Proof of Claim 3. Reciprocity can be increased by rewiring the edges
marked by red crosses into the dashed green edges.

Suppose (v2i, v2j) /∈ G⋆, where i < j. Since (v0, v2p) ∈ G⋆, either i ≥ 1 or j ≤ p−1.

By symmetry, we may assume that j ≤ p− 1. Let

H = G⋆ − {(v2k−1, v2k)}i/2k=1 − {(v2k, v2k+1)}p−1
k=j/2 − {(v2p, v0)}

+ {(v2k−1, v2k−2)}i/2k=1 + {(v2k, v2k−1)}pk=j/2+1 + {(v2j, v2i)};

see Figures A.4. Then H ∈ G(d+,d−) and ρ(H) = ρ(G⋆)+ 2i+2(p− 1− j) ≥ ρ(G⋆).

Thus H is also a maximum digraph, i = 0 and j = p − 1. Now (v0, v1, . . . , v2j, v0)

is a cycle of length 2j + 1 = 2p − 1 in Ha. This contradicts Lemma 2.4.4 if p > 2.

For p = 2, by applying Lemma 2.4.5 to v3 and the 3-cycle (v0, v1, v2, v0), we obtain

(v1, v3) ∈ Ha, contradicting E1∩G⋆ = ∅; see Figure A.4(b). Therefore, (v2i, v2j) ∈ G⋆

and hence E0 ⊂ G⋆.

Claim 4. If (v1, v2p−1) ∈ G⋆, then G⋆ ∩ E0 = ∅ and E1 ⊂ G⋆.

Proof. First consider the case p ≥ 3. Claim 3 applied to π[v1, v2p−1] yields E1 ⊂ G⋆

and (v2i, v2j) /∈ G⋆ for i ≥ 1 and j ≤ p − 1. It remains to show (v2i, v2j) /∈ G⋆

for i = 0 or j = p. By symmetry, we only need to show (v0, v2j) /∈ G⋆. Suppose

(v0, v2j) ∈ G⋆. Consider the cycle C = (v0, v3)+π[v3, v2p−1]+(v2p−1, v1, v2j, v0), which

has length 2p and satisfies the assumption of Lemma 2.4.6. Note that C ∩ G⋆
s =

{(v2p−1, v1), (v2j, v0)}. Lemma 2.4.6 then yields an H ∈ G(d+,d−) with ρ(H) =

ρ(G⋆) + 2p− 4 > ρ(G⋆), a contradiction. Thus (v0, v2j) /∈ G⋆ and E0 ∩G⋆ = ∅.
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0 1 2 3 4× ×
×

Figure A.5: Proof of Claim 4. Reciprocity can be increased by rewiring the edges
marked by red crosses into the dashed green edges.

For p = 2, E1 ⊂ G⋆ trivially. By Claim 3, (v0, v4) /∈ G⋆. To show E0 ∩G⋆ = ∅, by

symmetry, we only need to show (v0, v2) /∈ G⋆. Suppose (v0, v2) ∈ G⋆. Let

H = G⋆ − {(v0, v1), (v2, v0), (v3, v4)}+ {(v3, v0), (v0, v4), (v2, v1)};

see Figure A.5. Then H ∈ G(d+,d−) and ρ(H) = ρ(G) + 1, a contradiction. Thus

(v0, v2) /∈ G⋆ and E0 ∩G⋆ = ∅.
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APPENDIX B

DATASETS IN SECTION 2.5

Table B.1: Statistics of some real networks. The datasets without explicit citations
are from the SNAP repository [52]. This table shows for each network the number of
nodes (column 2), the number of edges (column 3), the number of reciprocal edges
(column 4), the number of reciprocal edges in a 3-path optimal digraph returned
by the GreedyRewire algorithm on page 20 (column 5), and the upper bound in
Proposition 2.3.1 (column 6).

Network Nodes Edges Reciprocal Edges

Observed Algo. 1 Bound

Biological networks

C. Elegan [73, 74] 297 2345 394 1364 1467

Mouse-Cortex [80] 49 964 656 804 825

Protein [70] 6339 34814 4216 22066 23630

Yeast [68] 6725 201775 1090 6446 8835

A. Thaliana [76] 10134 15580 12 40 77

Communication networks

email-EuAll 265214 418956 108950 128192 143287

wiki-Talk 2394385 5021410 723690 1219196 1285201

Product co-purchasing networks

amazon0302 262111 1234877 670170 801530 858907

amazon0312 400727 3200440 1701142 1945350 2079813

amazon0505 410236 3356824 1834774 2092700 2227333
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Table B.1: (continued)

Network Nodes Edges Reciprocal Edges

Observed Algo. 1 Bound

amazon0601 403394 3387388 1887960 2130012 2266214

Social networks

Epinions1 75879 508837 206194 299778 317821

Slashdot0811 77360 828161 717962 731044 737201

Slashdot0902 82168 870161 731862 749436 758751

Pokec 1632803 30622564 16641200 21997368 22813049

wiki-Vote 7115 103689 5854 31126 35989

LiveJournal1 4847571 68475391 51248308 55619590 56984610

LiveJournal [56] 5204176 76937805 56456064 61806458 63451685

Flickr [56] 1715255 22613980 14117878 16401174 16998181

YouTube [56] 1138499 4945382 3909878 3996410 4086949

Twitter [51] 41652230 1468364884 531703676 690897836 875520298

ego-Twitter 81306 1768135 851678 1112236 1179627

Google+ [35] 61858438 948605109 321728626 414578876 443168800

ego-Google+ 107614 13673453 2870336 4954418 5481158

Stackoverflow [77] 1749197 11894846 26558 2445802 2965936

Web graphs

BerkStan 685230 7600595 1902250 2257148 2913141

Google 875713 5105039 1565976 2106234 2460500

NotreDame 325729 1469679 759142 821340 907239

Stanford 281903 2312497 639722 770266 983414
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Table B.1: (continued)

Network Nodes Edges Reciprocal Edges

Observed Algo. 1 Bound

Wikipedia [1]

English 4709883 328267748 176523698 215049808 227103696

Swedish 1946669 49061638 10296750 12792974 13689733

Dutch 1794354 50061183 19993040 23471168 25078755

German 1738087 69385800 28079234 38594032 41799602

French 1555872 87231786 38347858 49859546 53102549

Russian 1163335 68613850 35807558 42472180 44437671

Italian 1160082 85261756 48584200 55921822 58593672

Spanish 1109589 32489175 4927794 10429430 11654906

Polish 1072883 51993365 28351902 32917546 34433059

Japanese 936882 61591797 26512542 36239836 38326442

Portuguese 841064 39840808 19062374 23016802 24224634

Chinese 781344 49703600 31848356 36082340 37248389

Korean 290291 15595628 9318976 10859386 11281173

P2P networks

Gnutella04 10876 39994 0 13878 16371

Gnutella05 8846 31839 0 9584 11830

Gnutella06 8717 31525 0 9606 11825

Gnutella08 6301 20777 0 5604 6947

Gnutella09 8114 26013 0 7064 8822

Gnutella24 26518 65369 0 19142 23920

Gnutella25 22687 54705 0 15292 19016
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Table B.1: (continued)

Network Nodes Edges Reciprocal Edges

Observed Algo. 1 Bound

Gnutella30 36682 88328 0 25386 31236

Gnutella31 62586 147892 0 40564 50227

Call Graph [66]

DrJava 1702 2920 4 778 1056

Endeavour 724 2067 2 358 519

FreeMind 237 623 18 140 217

JabRef 868 1532 2 340 523

jEdit 2222 5172 10 1286 1793

JForum 716 1506 2 248 364

JPetStore 222 328 0 30 42

Kunagi 781 1345 6 348 599

logicaldoc 892 3682 0 194 304

Makagiga 1777 4075 8 1106 1440

OpenKM 1390 2525 0 384 491

openproj 2824 4866 2 1428 1823

OpenSyncro 658 1271 2 216 327

SweetHome3D 1118 2363 12 558 844

weka 911 1737 2 392 581

Linux [75] 12391 33553 316 7982 10933
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APPENDIX C

ADDITIONAL PROOFS FOR CHAPTER 3

This appendix provides proofs for the main results in Section 3.4. We will use the

following additional notations and definitions.

• Denote the transition probability from state (x0, y0) to state (x, y) in t = x +

y − x0 − y0 steps by

pr(x0, y0;x, y) = P(x0,y0)
CA,r [(Xt, Yt) = (x, y)].

Note that the transition probability is nonzero only for this specific t. Thus we

will often omit to mention t explicitly hereafter and assume that the appropriate

t has been chosen.

• Let τn be the time of the n-th tie, which can be defined recursively by τ0 = −∞

and

τn = inf{t > τn−1 : Xt = Yt}, n ≥ 1.

Note that T = τN .

• Denote by qr(x0, y0) the probability of having no tie after leaving state (x0, y0),

i.e.,

qr(x0, y0) = P(x0,y0)
CA,r [Xt ̸= Yt, t ≥ 1].

Note that qr(x0, x0) = P(x0,x0)
CA,r [τ2 = ∞] and qr(x0, y0) = P(x0,y0)

CA,r [τ1 = ∞] for

x0 ̸= y0.
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• Denote by An,t(x, y) the set of paths that start from (x, y) at time 0 and end

with the n-th tie at time t, i.e., τn = t.

C.1 Proof of Theorem 3.4.1

Note that the CA= model is the standard Pólya urn model. The proof of The-

orem 3.4.1 combines known results for this model. Starting from the initial state

(x0, y0), Xt has a beta-binomial distribution with parameters x0 and y0 [45]. Note

that the event Xt = Yt occurs only if t = |x0 − y0| + 2k for some integer k ≥ 0. For

such t, Xt = Yt if and only if Xt = z0 + k, where z0 = max{x0, y0}. By Eq. (6.27) of

[45],

P(x0,y0)
CA,1 [Xt = Yt] = P(x0,y0)

CA,1 [Xt = z0 + k] =
B(z0 + k, z0 + k)

B(x0, y0)

(
t

k

)
. (C.1)

Recall that q1(x, y) is the probability of having no tie after leaving state (x, y). Thus

P(x0,y0)
CA,1 [T = t] = P(x0,y0)

CA,1 [Xt = Yt] · q1(z0 + k, z0 + k), (C.2)

where the second factor on the right-hand side is the probability of having no tie after

t.

Recall that the exit probability E(x, y) in [6] is the probability of ever having a

tie starting from (x, y), including the initial state (x, y). Thus for x ̸= y, q1(x, y) is

related to E(x, y) by

q1(x, y) = 1− E(x, y).

Using Eq. (22) of [6] for E(x, y), we obtain

q1(x+ 1, x) = q1(x, x+ 1) =
Γ(x+ 1/2)

Γ(x+ 1)Γ(1/2)
.

101



However, q1(x, x) ̸= E(x, x) = 1. By considering the one-step transition from (x, x)

to (x+ 1, x) or (x, x+ 1), we obtain

q1(x, x) =
1

2
q1(x+ 1, x) +

1

2
q1(x, x+ 1) =

Γ(x+ 1/2)

Γ(x+ 1)Γ(1/2)
.

Eliminating Γ(x+ 1/2) by the identity

Γ(2x) = π−1/222x−1Γ(x)Γ(x+ 1/2)

in [60, Eq. (5.5.5)], and using Γ(x+ 1) = xΓ(x) and Γ(1/2) =
√
π, we obtain

q1(x, x) =
Γ(2x)

x22x−1Γ(x)Γ(x)
=

1

x22x−1B(x, x)
. (C.3)

Substitution of Eqs. (C.1) and (C.3) into Eq. (C.2) yields

P(x0,y0)
CA,1 [T = t] =

1

B(x0, y0)
· 1

(z0 + k)22k+2z0−1

(
t

k

)
.

For t = |x0 − y0|+ 2k, Stirling’s formula yields

(
t

k

)
∼
√

2

π
t−1/22t,

and hence

P(x0,y0)
CA,1 [T = t] ∼ 1

2x0+y0−5/2
√
πB(x0, y0)

t−3/2. (C.4)

It is well-known that as t→∞, Xt/(Xt+Yt) converges almost surely to a beta random

variable V . It follows that |Xt− Yt|/(Xt + Yt)→ |2V − 1|. Thus, for V ̸= 1/2, which

holds almost surely, we have |Xt−Yt|/(Xt+Yt) > 0 for all large enough t. Therefore,

P(x0,y0)
CA,1 [T =∞] = 0. Summing over t in Eq. (C.4), we obtain as t→∞,

P(x0,y0)
CA,1 [T ≥ t] =

∞∑
t′=t

P(x0,y0)
CA,1 [T = t′]
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∼ 1

2

∞∑
s=t

1

2x0+y0−5/2
√
πB(x0, y0)

s−3/2

∼ 1

2

∫ ∞

t

1

2x0+y0−5/2
√
πB(x0, y0)

s−3/2ds

=
1

2x0+y0−5/2
√
πB(x0, y0)

t−1/2,

where we have used the fact that half of the terms are zero in the second step, and∑∞
s=t s

−a ∼
∫∞
t
s−ads in the third step. This completes the proof of Theorem 3.4.1.

C.2 Proof of Theorem 3.4.2

Similar to Eq. (C.2), we have

P(x0,y0)
CA,r [T = t] = pr(x0, y0; z0 + k, z0 + k) · qr(z0 + k, z0 + k). (C.5)

Thus the proof here amounts to finding expressions for both pr(x0, y0; z0 + k, z0 + k)

and qr(z0 + k, z0 + k) in CA ̸=. We break the proof into three lemmas.

Lemma C.2.1.

pr(x0, y0;x0 + k, y0 + h) ≥ (x0)k(y0)h
(rx0 + y0)k+h

(
k + h

k

)
, (C.6)

for all k ≥ 0, h ≥ 0.

Lemma C.2.2.

pr(x0, y0; x0 + k, y0 + h) ≤ (x0)k(y0)h
(r−1)k(rx0 + y0)h

, (C.7)

for all k ≥ 0, h ≥ 0.

Lemma C.2.3. For r > 1,

qr(x, x)→
r − 1

r + 1
, (C.8)

as x→∞.
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Before proving these lemmas, we first use them to prove Theorem 3.4.2.

Proof of Theorem 3.4.2. By Lemma C.2.1, we have

pr(x0, y0; z0 + k, z0 + k)

≥ (x0)k+z0−x0(y0)k+z0−y0

(rx0 + y0)2k+2z0−x0−y0

(
2k + 2z0 − x0 − y0

k + z0 − x0

)
=

Γ(rx0 + y0)

Γ(x0)Γ(y0)
· Γ(k + z0)Γ(k + z0)

Γ(k + z0 − x0 + 1)Γ(k + z0 − y0 + 1)
· Γ(2k + 2z0 − x0 − y0 + 1)

Γ(2k + 2z0 + (r − 1)x0)

Using the relation Γ(k + a)/Γ(k + b) ∼ ka−b as k →∞, we obtain

pr(x0, y0; z0 + k, z0 + k) ≳ Γ(rx0 + y0)

2x0+y0−2Γ(x0)Γ(y0)
(2k)−(r−1)x0−1

= 2(r + 1)x0φ1(2k)
−(r−1)x0−1,

where φ1 is given by Eq. (3.4). Application of this asymptotic bound and Lemma

C.2.3 to Eq. (C.5) yields

P(x0,y0)
CA,r [T = t] ≳ 2(r − 1)x0φ1t

−(r−1)x0−1. (C.9)

Note that P(x0,y0)
CA,r [T = +∞] = P(x0,y0)

CA,r [N = +∞] = 0, where the second equality will

follow from Theorem 3.4.4, so we will not provide a separate proof here. Summing

over t in Eq. (C.9) and noting that half of the terms are zero, we obtain as t→∞,

P(x0,y0)
CA,r [T ≥ t] =

∞∑
t′=t

P(x0,y0)
CA,r [T = t′] ≳

∫ ∞

t

(r − 1)x0φ1s
−(r−1)x0−1ds = φ1t

−(r−1)x0 ,

establishing the lower bound.
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In a similar way, Lemma C.2.2 yields

pr(x0, y0; z0 + k, z0 + k) ≲ 2(r + 1)(x0 − r−1)φ2(2k)
−(r−1)(x0−r−1)−1,

where φ2 is given by Eq. (3.5). Application of this asymptotic bound and Lemma

C.2.3 to Eq. (C.5) yields

P(x0,y0)
CA,r [T = t] ≲ 2(r − 1)(x0 − r−1)φ2t

−(r−1)(x0−r−1)−1,

and

P(x0,y0)
CA,r [T ≥ t] =

∞∑
t′=t

P(x0,y0)
CA,r [T = t′] ≲ φ2t

−(r−1)(x0−r−1),

establishing the upper bound.

Now we prove the lemmas. Recall that the transition probability p(x0, y0;x, y) of

going from (x0, y0) to (x, y) satisfies the following recursion (Chapman-Kolmogorov

equation),

pr(x0, y0; x, y) =
r(x− 1)

r(x− 1) + y
pr(x0, y0;x− 1, y) +

y − 1

rx+ y − 1
pr(x0, y0; x, y − 1),

(C.10)

for x ≥ x0, y ≥ y0 and x+y ≥ x0+y0+1, with the boundary condition pr(x0, y0;x, y) =

0 for x < x0 or y < y0. Note that we have replaced the one-step transition probabilities

QCA,r(x− 1, y;x, y) and QCA,r(x, y − 1;x, y) by the expressions in Eq. (3.1).

Proof of Lemma C.2.1. We will use the short-hand notation p(k, h) for pr(x0, y0;x0+

k, y0+h), and ψ(k, h) for the right-hand side of Eq. (C.6). We first prove the boundary

case for k = 0. By Eq. (C.10), for h ≥ 1,

p(0, h) =
y0 + h− 1

rx0 + y0 + h− 1
p(0, h− 1),
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which is a simple recursion in h and can be expanded to yield

p(0, h) =
(y0)h

(rx0 + y0)h
p(0, 0) =

(y0)h
(rx0 + y0)h

= ψ(0, h),

which yields Eq. (C.6) for k = 0 and h ≥ 1. Here we have used p(0, 0) = pr(x0, y0;x0, y0) =

1.

Similarly, for the other boundary case h = 0, k ≥ 1, we have

p(k, 0) =
(x0)k

(x0 + r−1y0)k
p(0, 0) =

(x0)k
(x0 + r−1y0)k

≥ (x0)k
(rx0 + y0)k

= ψ(k, 0),

where the last inequality is because (x)k increases with x, and x0 + r−1y0 ≤ rx0 + y0.

For the general case, we use induction on k+h. The base case k+h = 1 is already

proven, since either k = 0 or h = 0 when k + h = 1. Assume Eq. (C.6) holds for

k+ h = m ≥ 1. Consider k+ h = m+ 1. We can also assume k ≥ 1 and h ≥ 1, since

we have proven the boundary cases for k = 0 or h = 0. The recursion in Eq. (C.10)

yields

p(k, h) =
r(x0 + k − 1)

rk + h+ c0 − r
p(k − 1, h) +

y0 + h− 1

rk + h+ c0 − 1
p(k, h− 1)

≥ r(x0 + k − 1)

rk + h+ c0 − 1
p(k − 1, h) +

y0 + h− 1

rk + h+ c0 − 1
p(k, h− 1),

where c0 = rx0 + y0.

Applying the induction hypothesis p(k − 1, h) ≥ ψ(k − 1, h) and p(k, h − 1) ≥

ψ(k, h− 1) to the above inequality yields

p(k, h) ≥ r(x0 + k − 1)

rk + h+ c0 − 1
ψ(k − 1, h) +

y0 + h− 1

rk + h+ c0 − 1
ψ(k, h− 1)

=
(rk + h)(k + h+ c0 − 1)

(k + h)(rk + h+ c0 − 1)
ψ(k, h),
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where in the last step we have used

ψ(k − 1, h) =
k

k + h
· k + h+ c0 − 1

x0 + k − 1
ψ(k, h),

and

ψ(k, h− 1) =
h

k + h
· k + h+ c0 − 1

y0 + h− 1
ψ(k, h).

To complete the proof, it suffices to show that

(rk + h)(k + h+ c0 − 1)

(k + h)(rk + h+ c0 − 1)
≥ 1,

but this is equivalent to r ≥ 1, which is true by assumption.

Proof of Lemma C.2.2. The proof of Lemma C.2.2 follows the same line of reasoning

as that used to prove Lemma C.2.1. The boundary cases can be verified directly. We

only outline the induction step here. Applying Eq. (C.7) to the right-hand side of

Eq. (C.10) yields

p(k, h) ≤ r(x0 + k − 1)

rk + h+ c0 − r
· (x0)k−1(y0)h
(r−1)k−1(c0)h

+
y0 + h− 1

rk + h+ c0 − 1
· (x0)k(y0)h−1

(r−1)k(c0)h−1

=

[
r(r−1 + k − 1)

rk + h+ c0 − r
+

c0 + h− 1

rk + h+ c0 − 1

]
(x0)k(y0)h
(r−1)k(c0)h

.

Note that

r(r−1 + k − 1)

rk + h+ c0 − r
+

c0 + h− 1

rk + h+ c0 − 1
≤ r(r−1 + k − 1)

rk + h+ c0 − r
+

c0 + h− 1

rk + h+ c0 − r
= 1,

which completes the induction.

Proof of Lemma C.2.3. Recall that An,2k(x, x) is the set of paths that start from (x, x)

at time 0 and end with the n-th tie at time 2k, i.e., τn = 2k. Let An,2k = An,2k(0, 0).
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Note that the paths in An,2k(x, x) are exactly the paths in An,2k translated by (x, x).

Let π̃ ∈ An,2k and its state at time t be π̃t = (x̃t, ỹt). The translation of π̃ by (x, x),

denoted x + π̃, is a path in An,2k(x, x), whose probability in the CA model is given

by

P(x,x)
CA,r[x+ π̃] =

2k−1∏
j=0

(
r(x+ x̃j)

r(x+ x̃j) + (x+ ỹj)

)x̃j+1−x̃j
(

(x+ ỹj)

r(x+ x̃j) + (x+ ỹj)

)ỹj+1−ỹj

.

For fixed k and π̃, as x→∞, P(x,x)
CA,r[x+ π̃] converges to

2k−1∏
j=0

(
r

r + 1

)x̃j+1−x̃j
(

1

r + 1

)ỹj+1−ỹj

= P(0,0)
RW,r[π̃],

which corresponds to the probability of the path π̃ in a random walk with parameter

r/(r + 1). Thus, as x→∞,

P(x,x)
CA,r[τn = 2k] =

∑
π̃∈An,2k

P(x,x)
CA,r[x+ π̃]→

∑
π̃∈An,2k

P(0,0)
RW,r[π̃] = P(0,0)

RW,r[τn = 2k].

After summing over k and using the Dominated Convergence Theorem, we obtain

P(x,x)
CA,r[τn <∞] =

∞∑
k=1

P(x,x)
CA,r[τn = 2k]→

∞∑
k=1

P(0,0)
RW,r[τn = 2k] = P(0,0)

RW,r[τn <∞].

In particular,

qr(x, x) = 1− P(x,x)
CA,r[τ2 <∞]→ 1− P(0,0)

RW,r[τ2 <∞] =
r − 1

r + 1
,

where we have used Eq. (3.3) in [38] for P(0,0)
RW,r[τ2 <∞] in the last step.
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C.3 Proof of Theorem 3.4.3

Recall that An,t(x0, y0) is the set of paths starting from (x0, y0) that end with

the n-th tie at time t, i.e., τn = t. We will use the short-hand notation An,t for

An,t(x0, y0). As in Section C.1, the set An,t is non-empty only if t = |x0− y0|+2k for

some integer k ≥ n− 1, in which case, every path in An,t ends in state (z0+ k, z0+ k)

with z0 = max{x0, y0}. Recall from [6] that the probability of any path π connecting

states (x0, y0) and (x, y) is

P(x0,y0)
CA,1 [π] =

B(x, y)

B(x0, y0)
=

B(x, y)

B(x0, y0)
2tP(x0,y0)

RW,1 [π].

Summing over π ∈ An,t, where x = y = z0 + k, we obtain

P(x0,y0)
CA,1 [τn = t] =

B(z0 + k, z0 + k)

B(x0, y0)
2tP(x0,y0)

RW,1 [τn = t]. (C.11)

Thus the probability of having the n-th and also the last tie at time t is given by

P(x0,y0)
CA,1 [T = t, N = n] = P(x0,y0)

CA,1 [τn = t] · q1(z0 + k, z0 + k)

=
1

2x0+y0−2B(x0, y0)
· 1

t+ x0 + y0
P(x0,y0)
RW,1 [τn = t], (C.12)

where we have used Eqs. (C.11) and (C.3) in the last step. Note that P(x0,y0)
RW,1 [τn = t] is

the probability fn,t(d0) of the n-th visit to the origin at time t in a simple symmetric

random walk starting from d0 = |x0 − y0|. Summing over t in (C.12), we obtain

P(x0,y0)
CA,1 [N = n] =

1

2x0+y0−2B(x0, y0)

∞∑
k=n−1

1

2k + d0 + x0 + y0
fn,d0+2k(d0)

=
1

2x0+y0−2B(x0, y0)
Gn(1; d0), (C.13)
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where

Gn(z; d0) =
∞∑

k=n−1

1

2k + d0 + x0 + y0
fn,d0+2k(d0)z

d0+2k.

To simplify Gn(z; d0), we have

d

dz
[zx0+y0Gn(z; d0)] = zx0+y0−1

∞∑
k=n−1

fn,d0+2k(d0)z
d0+2k = zx0+y0−1Φn(z; d0), (C.14)

where Φn(z; d0) =
∑∞

k=n−1 fn,d0+2k(d0)z
d0+2k is the generating function of the proba-

bility distribution of the n-th visit to the origin in a simple random walk starting from

d0. Let F1(z) be the generating function of the distribution of the time of the first

return to the origin in a simple random walk starting from the origin. The standard

renewal argument (see e.g. XI.3.d of [28]) shows that Φn(z; d0) is given by

Φn(z; d0) = [Φ1(z; 1)]
d0 [F1(z)]

n−1,

where Φ1(z; 1) and F1(z) are given by Eqs. (3.6) and (3.14) of [28, Chap. XI], respec-

tively. Therefore,

Φn(z; d0) = z−d0
(
1−
√
1− z2

)n+d0−1

. (C.15)

Substituting Eq. (C.15) into Eq. (C.14) and integrating from 0 to 1 yields

Gn(1; d0) =

∫ 1

0

z2min{x0,y0}−1
(
1−
√
1− z2

)n+d0−1

dz,

where we have used x0 + y0 − d0 = 2min{x0, y0}. A change of variable u =
√
1− z2

yields

Gn(1; d0) =

∫ 1

0

u(1− u2)min{x0,y0}−1(1− u)n+d0−1du,

which is upper bounded by

Gn(1; d0) ≤
∫ 1

0

u(1− u)n+d0−1du = B(2, n+ d0), (C.16)
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and lower bounded by

Gn(1; d0) ≥
∫ 1

0

u(1− u)min{x0,y0}−1(1− u)n+d0−1du = B (2, n+max{x0, y0} − 1) ,

(C.17)

where we have used min{x0, y0}+d0 = max{x0, y0}. Applying Eqs. (C.16) and (C.17)

to Eq. (C.13) yields

B(2, n+max{x0, y0} − 1)

2x0+y0−2B(x0, y0)
≤ P(x0,y0)

CA,1 [N = n] ≤ B(2, n+ d0)

2x0+y0−2B(x0, y0)
.

Note that P(x0,y0)
CA,1 [N = ∞] = P(x0,y0)

CA,1 [T = ∞] = 0. Summing over n and using∑∞
m=nB(2,m) = n−1, we obtain

1

2x0+y0−2B(x0, y0)
· 1

n+max{x0, y0} − 1
≤ P(x0,y0)

CA,1 [N ≥ n] ≤ 1

2x0+y0−2B(x0, y0)
· 1

n+ d0
,

which immediately yields Eq. (3.6).

C.4 Proof of Theorem 3.4.4

We first prove the following lemma.

Lemma C.4.1. The probability P(x0,y0)
CA,r [τ1 < ∞] of ever having a tie is bounded as

follows,

P(x0,y0)
CA,r [τ1 <∞] ≤


1, x0 ≤ y0,

(y0)x0−y0

(rx0+y0)x0−y0

(
1 + 1

r

)x0−y0 , x0 > y0.

Note that P(x0,y0)
CA,r [τ1 <∞] is the exit probability E(x, y) in [6] when r = 1.

Proof. The case x0 = y0 is trivial since τ1 = 0. When x0 < y0, Theorem 3.21 of [42]

yields Yt/Xt → 0 almost surely, from which it follows that Xt > Yt eventually and

hence P(x0,y0)
CA,r [τ1 <∞] = 1.
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Now assume x0 > y0. Recall that A1,t(x0, y0) is the set of paths starting from

(x0, y0) that end with the first tie at time t. Note that A1,t(x0, y0) is nonempty only

if t = d0 + 2k, where d0 = x0 − y0 and k ≥ 0. Let π ∈ A1,t(x0, y0) and its state at

time j be πj = (xj, yj). The probability of the path π is given by

P(x0,y0)
CA,r [π] =

t−1∏
j=0

(
rxj

rxj + yj

)xj+1−xj
(

yj
rxj + yj

)yj+1−yj

=
rxt−x0(x0)xt−x0(y0)yt−y0∏t−1

j=0(rxj + yj)

=
rxt−x0(x0)xt−x0(y0)yt−y0∏t−1

j=0[(r − 1)xj + x0 + y0 + j]
,

where in the last step we have used xj + yj = x0 + y0 + j. Note that P(x0,y0)
CA,r [π] is

maximized if the xj’s are minimized, subject to the constraints that the xj’s increase

monotonically from x0 to xt with step size 0 or 1, and that xj > yj for all 1 ≤ j ≤ t−1,

or equivalently xj > x0 + (j − d0)/2. This is achieved by the following sequence,

x∗j =


x0, j = 0, 1, . . . , d0 − 1;

x0 + ⌊(j − d0)/2⌋+ 1, j = d0, d0 + 1, . . . , t− 1;

xt, j = t.

The corresponding path π∗ has probability

P(x0,y0)
CA,r [π∗] =

d0−2∏
j=0

y0 + j

rx0 + y0 + j

xt−1∏
x=x0

rx

rx+ (x− 1)
· x− 1

r(x+ 1) + (x− 1)
· xt − 1

rxt + (xt − 1)
,

which, after arrangement, yields,

P(x0,y0)
CA,r [π∗] =

d0−1∏
j=0

y0 + j

rx0 + y0 + j

xt−1∏
x=x0

rx

(r + 1)x+ r
· x

(r + 1)x+ (r − 1)

≤ (y0)d0
(rx0 + y0)d0

rxt−x0

(r + 1)2(xt−x0)
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=
(y0)d0(r + 1)d0

(rx0 + y0)d0

(
r

r + 1

)xt−x0
(

1

r + 1

)yt−y0

=
(y0)d0(r + 1)d0

(rx0 + y0)d0
P(x0,y0)
RW,r [π].

Thus we have

P(x0,y0)
CA,r [π] ≤ P(x0,y0)

CA,r [π∗] ≤ (y0)d0(r + 1)d0

(rx0 + y0)d0
P(x0,y0)
RW,r [π],

and, after summing over π ∈ A1,t(x0, y0),

P(x0,y0)
CA,r [τ1 = t] ≤ (y0)d0(r + 1)d0

(rx0 + y0)d0
P(x0,y0)
RW,r [τ1 = t].

Summing over t, we obtain

P(x0,y0)
CA,r [τ1 <∞] ≤ (y0)d0(r + 1)d0

(rx0 + y0)d0
P(x0,y0)
RW,r [τ1 <∞].

By Eq. (3.9) and XI.3.d of [28], P(x0,y0)
RW,r [τ1 < ∞] = r−d0 , from which the desired

conclusion follows.

Corollary C.4.2. The probability of having at least one more tie starting from a tie

state (x, x) is bounded by

P(x,x)
CA,r[τ2 <∞] ≤ 2

r + 1
.

Proof. By considering the one-step transition from (x, x) into (x, x+1) or (x+1, x),

we obtain

P(x,x)
CA,r[τ2 <∞] =

r

r + 1
P(x+1,x)
CA,r [τ1 <∞] +

1

r + 1
P(x,x+1)
CA,r [τ1 <∞]

≤ x

(r + 1)x+ r
+

1

r + 1
≤ 2

r + 1
,

where the first inequality follows from Lemma C.4.1.
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Now we prove Theorem 3.4.4.

Proof of Theorem 3.4.4. Let Zn be the common value of Xt and Yt at t = τn, i.e.,

Zn = Xτn . Conditioned on τn < ∞ and Zn = z, the probability of τn+1 < ∞ is just

the probability of having a tie after leaving (z, z). Thus

P(x0,y0)
CA,r [τn+1 <∞ | τn <∞, Zn = z] = P(z,z)

CA,r[τ2 <∞] ≤ 2

r + 1
,

by Corollary C.4.2. Removal of the conditioning yields

P(x0,y0)
CA,r [τn+1 <∞ | τn <∞] ≤ 2

r + 1
.

It follows that

P(x0,y0)
CA,r [N ≥ n] = P(x0,y0)

CA,r [τn <∞]

= P(x0,y0)
CA,r [τ1 <∞]

n−1∏
i=1

P(x0,y0)
CA,r [τi+1 <∞ | τi <∞]

≤ P(x0,y0)
CA,r [τ1 <∞]

(
2

r + 1

)n−1

.

An application of Lemma C.4.1 completes the proof.
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APPENDIX D

ADDITIONAL PROOFS FOR CHAPTER 4

This appendix provides proofs of the theorems in Section 4.3.1.

D.1 Proof of Theorem 4.3.1

Let pi = Λ−1
∑i

j=1 λj. Note that Λ−1λi+1,i = 1 − pi and Λ−1λi−1,i = pi−1. Also

note that ni,i+1 = i and ni,i−1 = n− i + 1. Thus the optimal social cost in (4.8) can

be rewritten as

C∗ =
1

n− 1

n∑
i=1

1

bi

[√
i(1− pi) +

√
(n− i+ 1)pi−1

]2
≥ 1

(n− 1)bmax

n∑
i=1

[√
i(1− pi) +

√
(n− i+ 1)pi−1

]2
.

The inequality (x+ y)2 ≥ x2 + y2 for xy ≥ 0 then yields

C∗ ≥ Co

bmax

, (D.1)

where

Co =
1

n− 1

n∑
i=1

[i(1− pi) + (n− i+ 1)pi−1] . (D.2)

Let i∗ = min{i : pi ≥ 1/2}. Since pi is increasing in i, we have pi < 1/2 for all i < i∗

and pi ≥ 1/2 for all i ≥ i∗. Therefore,

Co ≥ 1

n− 1

[
i∗−1∑
i=1

1

2
i+

n∑
i=i∗+1

1

2
(n− i+ 1)

]
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=
1

2(n− 1)

[(
i∗ − n+ 1

2

)2

+
n2 − 1

4

]
≥ n+ 1

8
, (D.3)

which, combined with (D.1), yields the lower bound in (4.9).

The cost under selfish allocation in (4.6) can be upper bounded as follows,

Ĉ =
1

n− 1

n∑
i=1

1

bi

[
i
√
1− pi + (n− i+ 1)

√
pi−1

] (√
1− pi +

√
pi−1

)
≤ 1

(n− 1)bmin

n∑
i=1

[
i
√

1− pi + (n− i+ 1)
√
pi−1

] (√
1− pi +

√
pi−1

)
=

1

(n− 1)bmin

n∑
i=1

[
i(1− pi) + (n− i+ 1)pi−1 + (n+ 1)

√
pi−1(1− pi)

]
=
Co + Cd

bmin

, (D.4)

where Co is as in (D.2) and

Cd =
n+ 1

n− 1

n−1∑
i=2

√
pi−1(1− pi). (D.5)

Since
√
pi−1(1− pi) ≤ 2−1(pi−1 + 1− pi) ≤ 2−1,

Cd ≤ (n+ 1)(n− 2)

2(n− 1)
. (D.6)

For an upper bound on Co, we again use pi < 1/2 for i < i∗ and pi ≥ 1/2 for i ≥ i∗.

Thus

Co =
1

n− 1

n∑
i=1

[pi−1(n− i+ 1) + i(1− pi)]

≤ 1

n− 1

[
i∗∑
i=1

1

2
(n− i+ 1) +

n∑
i=i∗

1

2
i

]

=
1

2(n− 1)

[
5n2 + 6n+ 1

4
−
(
i∗ − n+ 1

2

)2
]
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≤ (n+ 1)(5n+ 1)

8(n− 1)
, (D.7)

which, together with (D.4) and (D.6), yields the upper bound in (4.9).

By (D.1) and (D.4), we have

PoS =
Ĉ

C∗ ≤
bmax

bmin

(
1 +

Cd

Co

)
.

Thus (4.10) follows from (D.3) and (D.6).

D.2 Proof of Theorem 4.3.2

Consider the case of homogeneous content creation rates with λi = 1. Consider

a heterogeneous set of budgets of allocation where bi = b1 > b2, for all i ̸= 2. The

optimal social cost, under centralized allocation, is given by

C∗ =
Co

b1
+

1

b1

(
b1
b2
− 1

)
1

n− 1

[√
2

(
1− 2

n

)
+

√
1− 1

n

]2
,

where Co is as in (D.2). The social cost under selfish allocation is

Ĉ =
Co + Cd

b1
+

1

b1

(
b1
b2
− 1

)
1

n− 1

(
1√
n
+

√
1− 2

n

)[(√
n− 1√

n

)
+ 2

√
1− 2

n

]
,

where Cd is as in (D.5). By (D.3), (D.7) and (D.6), Co = Θ(n) and Cd = O(n). If

b2/b1 = Ω(n2), then C∗ = Θ(b−1
2 n−1) and Ĉ = Θ(b−1

2 n−1/2). Thus PoS = Ĉ/C∗ =

Θ(
√
n), which grows unbounded with the network size.

D.3 Proof of Theorem 4.3.3

Since b changes C∗ and Ĉ only by a multiplicative factor, it suffices to prove the

theorem for b = 1. Let i be the hub of the i-th star, and Li the leaf nodes connected
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to it. Then nil = n−1 and nli = 1 for any l ∈ Li. For adjacent hubs, ni−1,i = (i−1)p

and ni+1,i = (k − i)p. Then the optimal social cost is given by

C∗ =
1

n(n− 1)

(
k∑

i=1

∑
l∈Li

(n− 1) + S1

)
= 1− k

n
+

S1

n(n− 1)
,

where

S1 =
k∑

i=1

[∑
l∈Li

√
n− 1 +

∑
j=i±1

√
(n− nji)nji

]2
.

Using the inequalities
∑3

i=1 a
2
i ≤

(∑3
i=1 ai

)2 ≤ 3
∑3

i=1 a
2
i , we obtain S1 = Θ(S2),

where

S2 = k(p− 1)2(n− 1) +
k∑

i=1

i∑
j=i−1

p2j(k − j)

=(n− k)(p− 1)(n− 1) +
1

3
n(nk − p) = Θ(n2max{p, k}).

Thus C∗ = Θ(max{p, k}) = Ω(
√
n).

The cost under selfish allocation can be written as follows,

Ĉ =
1

n(n− 1)

(
k∑

i=1

∑
l∈Li

(n− 1) + S3

)
= 1− k

n
+

S2

n(n− 1)
,

where

S3 =
k∑

i=1

(∑
l∈Li

1 +
∑
j=i±1

√
nji

)[∑
l∈Li

(n− 1) +
∑
j=i±1

(n− nji)
√
nji

]
.

Using the facts that |Li| = p− 1, nji ≤ n and the inequality (n− x)
√
x ≤ 2

3
√
3
n3/2 for

x ∈ [0, n], we obtain

S3 ≤
k∑

i=1

(p+ 2
√
n)

(
pn+

4

3
√
3
n3/2

)
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= O
(
(n+ k

√
n)(pn+ n3/2)

)
= O

(
n2 max{k, p}

)
.

Thus Ĉ = O(max{p, k}). Since Ĉ ≥ C∗ = Θ(max{p, k}), we have Ĉ = Θ(max{p, k})

and PoS = Θ(1).

D.4 Proof of Theorem 4.3.4

As in the proof of Theorem 4.3.3, it suffices to consider the case b = 1. Note that

λji = nji. The optimal social cost(4.8) and cost under selfish allocation (4.6) can now

be written as follows,

C∗ =
1

n(n− 1)

∑
i∈V

 ∑
j∈N(i)

√
(n− nji)nji

2

, (D.8)

and

Ĉ =
1

n(n− 1)

∑
i∈V

 ∑
j∈N(i)

(n− nji)
√
nji

 ∑
j∈N(i)

√
nji

 . (D.9)

Let the depth of the tree be h. Then n = kh+1−1
k−1

. Label the nodes in such a way

that that for i = 1, 2, . . . , n, p(i) = ⌈(i−1)/k⌉ is the parent of i, cj(i) = k(i−1)+j+1

is the j-th child of i, for j = 1, 2, . . . , k. Then np(i),i =
kh+1−kh−h(i)+1

k−1
and ncj(i),i =

kh−h(i)−1
k−1

, where h(i) = ⌊logk(ki− i)⌋ is the depth of node i.

By (D.8) , the optimal social cost is

C∗ =
1

n(n− 1)

n∑
i=1

[√
(n− np(i),i)np(i),i +

k∑
j=1

√
(n− ncj(i),i)ncj(i),i

]2
,

which is bounded by

1

n(n− 1)
(S1 + k2S2) ≤ C∗ ≤ 2

n(n− 1)
(S1 + k2S2),

where

S1 =
n∑

i=1

(n− np(i),i)np(i),i,
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and

S2 =
n∑

i=1

(n− nc1(i),i)nc1(i),i.

Using the facts that n = kh+1−1
k−1

, np(i),i = kh+1−kh−h(i)+1

k−1
and nc1(i),i = kh−h(i)−1

k−1
, we

obtain

S1 =
1

(k − 1)2

n∑
i=1

(kh−h(i)+1 − 1)(kh+1 − kh−h(i)+1)

=
1

(k − 1)2

h∑
h′=0

kh
′
(kh−h′+1 − 1)(kh+1 − kh−h′+1)

=
hk − h− 2

(k − 1)3
k2h+2 +

hk − h+ 2k

(k − 1)3
kh+1

= Θ(hk2h) = Θ(n2 logk n),

and

S2 =
1

(k − 1)2

n∑
i=1

(kh+1 − kh−h(i))(kh−h(i) − 1)

=
1

(k − 1)2

h∑
h′=0

kh
′
(kh+1 − kh−h′

)(kh−h′ − 1) =
1

k
S1.

Therefore,

1 + k

n(n− 1)
S1 ≤ C∗ ≤ 2(1 + k)

n(n− 1)
S1,

and hence C∗ = Θ(k logk n).

By (D.9), the social cost under selfish allocation is

Ĉ =
1

n(n− 1)

n∑
i=1

[
(n− np(i),i)

√
np(i),i + k(n− nc1(i),i)

√
ni,c1(i)

] (√
np(i),i + 2

√
nc1(i),i

)
=

1

n(n− 1)
(S1 + k2S2 + kS3),
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where

S3 =
n∑

i=1

(2n− nc1(i),i − np(i),i)
√
nc1(i),inp(i),i.

Note that 2n ≥ 2n− nc1(i),i − np(i),i ≥ n, and n ≥ np(i),i ≥ n/2 for i ̸= 1, so

S3 = Θ

(
n3/2

n∑
i=2

√
nc1(i),i

)
.

We also have

n∑
i=2

√
nc1(i),i =

1√
k − 1

h−1∑
h′=1

kh
′
√
kh−h′ − 1 = Θ(n/k),

yeilding S3 = Θ(kn2 logk n + n5/2) and hence Ĉ = Θ(S3/n
2) = Θ(k logk n +

√
n).

Taking the ratio Ĉ/C∗, the result follows.
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[34] Godrèche, Claude, and Luck, Jean-Marc. On leaders and condensates in a grow-
ing network. Journal of Statistical Mechanics: Theory and Experiment 2010, 07
(2010), P07031.

[35] Gonzalez, Roberto, Cuevas, Ruben, Motamedi, Reza, Rejaie, Reza, and Cuevas,
Angel. Google+ or Google-?: Dissecting the evolution of the new OSN in its first
year. In Proceedings of the 22Nd International Conference on World Wide Web
(2013), WWW ’13, pp. 483–494.

[36] Hakimi, S Louis. On realizability of a set of integers as degrees of the vertices
of a linear graph. i. Journal of the Society for Industrial & Applied Mathematics
10, 3 (1962), 496–506.
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[62] Perc, Matjaž. The matthew effect in empirical data. Journal of The Royal
Society Interface 11, 98 (2014).

[63] Petersen, Alexander M., Jung, Woo-Sung, Yang, Jae-Suk, and Stanley, H. Eu-
gene. Quantitative and empirical demonstration of the matthew effect in a study
of career longevity. Proceedings of the National Academy of Sciences 108, 1
(2011), 18–23.

[64] Pittel, Boris. On spreading a rumor. SIAM J. Appl. Math. 47, 1 (Mar. 1987),
213–223.

[65] Price, Derek J. de Solla. A general theory of bibliometric and other cumulative
advantage processes. Journal of the American Society for Information Science
27, 5 (1976), 292–306.

[66] Qu, Yu, Zheng, Qinghua, Liu, Ting, Li, Jian, and Guan, Xiaohong. In-depth
measurement and analysis on densification power law of software execution. In
Proceedings of the 5th International Workshop on Emerging Trends in Software
Metrics (New York, NY, USA, 2014), WETSoM 2014, ACM, pp. 55–58.

[67] Salganik, Matthew J., Dodds, Peter Sheridan, and Watts, Duncan J. Experi-
mental study of inequality and unpredictability in an artificial cultural market.
Science 311, 5762 (2006), 854–856.

126



[68] Teixeira, Miguel Cacho, Monteiro, Pedro Tiago, Guerreiro, Joana Fernan-
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